1
|
Kiran NS, Singh S, Yashaswini C, Prajapati BG. Revisiting the potential of natural antimicrobial peptides against emerging respiratory viral disease: a review. 3 Biotech 2025; 15:40. [PMID: 39816617 PMCID: PMC11729606 DOI: 10.1007/s13205-024-04184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025] Open
Abstract
This review assesses the antiviral capabilities of antimicrobial peptides (AMPs) against SARS-CoV-2 and other respiratory viruses, focussing on their therapeutic potential. AMPs, derived from natural sources, exhibit promising antiviral properties by disrupting viral membranes, inhibiting viral entry, and modulating host immune responses. Preclinical studies demonstrate that peptides such as defensins, cathelicidins, and lactoferrin can effectively reduce SARS-CoV-2 replication and inhibit viral spread. In addition, AMPs have shown potential in enhancing the host's antiviral immunity. Despite these promising outcomes, several challenges require assessments before transforming into clinical translation. Several issues related to peptide stability, cytotoxicity, and efficient delivery systems pose significant limitations to their therapeutic application. Recent advancements in peptide engineering, nanotechnology-based delivery systems, and peptide conjugation strategies have improved AMPs stability and bioavailability; however, further optimization is essential. Moreover, whilst AMPs are safe, their effects on host cells and tissues need a thorough investigation to minimise potential adverse reactions. This review concludes that whilst AMPs present a promising route for antiviral therapies, particularly in targeting SARS-CoV-2, extensive clinical trials and additional studies are required to overcome current limitations. Future research should focus on developing more stable, less toxic AMPs formulations with enhanced delivery mechanisms, aiming to integrate AMPs into viable therapeutic options for respiratory viral diseases, including COVID-19 and other emerging infections.
Collapse
Affiliation(s)
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200 Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| | - Bhupendra G. Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012 India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000 Thailand
| |
Collapse
|
2
|
Coelho NCS, Portuondo DLF, Lima J, Velásquez AMA, Valente V, Carlos IZ, Cilli EM, Graminha MAS. Peptide Dimerization as a Strategy for the Development of Antileishmanial Compounds. Molecules 2024; 29:5170. [PMID: 39519812 PMCID: PMC11547375 DOI: 10.3390/molecules29215170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Leishmaniasis is recognized as a serious public health problem in Brazil and around the world. The limited availability of drugs for treatment, added to the diversity of side effects and the emergence of resistant strains, shows the importance of research focused on the development of new molecules, thus contributing to treatments. Therefore, this work aimed to identify leishmanicidal compounds using a peptide dimerization strategy, as well as to understand their mechanisms of action. Herein, it was demonstrated that the dimerization of the peptide TSHa, (TSHa)2K, presented higher potency and selectivity than its monomeric form when evaluated against Leishmania mexicana and Leishmania amazonensis. Furthermore, these compounds are capable of inhibiting the parasite cysteine protease, an important target explored for the development of antileishmanial compounds, as well as to selectively interact with the parasite membranes, as demonstrated by flow cytometry, permeabilization, and fluorescence microscopy experiments. Based on this, the identified molecules are candidates for use in in vivo studies with animal models to combat leishmaniasis.
Collapse
Affiliation(s)
- Natália C. S. Coelho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Deivys L. F. Portuondo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Jhonatan Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Angela M. A. Velásquez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Valéria Valente
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Iracilda Z. Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Eduardo M. Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| |
Collapse
|
3
|
Singh S, Jha B, Tiwari P, Joshi VG, Mishra A, Malik YS. Recent approaches in the application of antimicrobial peptides in food preservation. World J Microbiol Biotechnol 2024; 40:315. [PMID: 39249587 DOI: 10.1007/s11274-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
Collapse
Affiliation(s)
- Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Pratiksha Tiwari
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Adarsh Mishra
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Yashpal Singh Malik
- ICAR-IVRI (Mukteswar Campus), Mukteswar, Nainital, Uttarakhand, 263138, India
| |
Collapse
|
4
|
Bicho GFH, Nunes LOC, Fiametti LO, Argentin MN, Candido VT, Camargo ILBC, Cilli EM, Santos-Filho NA. Synthesis, Characterization, and Study of the Antimicrobial Potential of Dimeric Peptides Derived from the C-Terminal Region of Lys 49 Phospholipase A 2 Homologs. Toxins (Basel) 2024; 16:308. [PMID: 39057948 PMCID: PMC11281518 DOI: 10.3390/toxins16070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the search for new alternatives to conventional antibiotics to combat bacterial resistance is an urgent task, as many microorganisms threaten human health due to increasing bacterial resistance to traditional medicines. Thus, new molecules such as antimicrobial peptides have emerged as promising alternatives because of their low induction of resistance and broad spectrum of action. In this context, in the past few years, our research group has synthesized and characterized a peptide derived from the C-terminal region of the Lys49 PLA2-like BthTX-I, named p-BthTX-I. After several studies, the peptide (p-BthTX-I)2K was proposed as the molecule with the most considerable biotechnological potential. As such, the present work aimed to evaluate whether the modifications made on the peptide (p-BthTX-I)2K can be applied to other molecules originating from the C-terminal region of PLA2-like Lys49 from snake venoms. The peptides were obtained through the solid-phase peptide synthesis technique, and biochemical and functional characterization was carried out using dichroism techniques, mass spectrometry, antimicrobial activity against ESKAPE strains, hemolytic activity, and permeabilization of lipid vesicles. The antimicrobial activity of the peptides was promising, especially for the peptides (p-AppK)2K and (p-ACL)2K, which demonstrated activity against all strains that were tested, surpassing the model molecule (p-BthTX-I)2K in most cases and maintaining low hemolytic activity. The modifications initially proposed for the (p-BthTX-I)2K peptide were shown to apply to other peptides derived from Lys49 PLA2-like from snake venoms, showing promising results for antimicrobial activity. Future assays comparing the activity of the dimers obtained through this strategy with the monomers of these peptides should be carried out.
Collapse
Affiliation(s)
- Gabriel F. H. Bicho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Letícia O. C. Nunes
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Louise Oliveira Fiametti
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Marcela N. Argentin
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Vitória T. Candido
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Ilana L. B. C. Camargo
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Eduardo M. Cilli
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Norival A. Santos-Filho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| |
Collapse
|
5
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
6
|
Costa NS, dos Anjos LR, de Souza JV, Brasil MCDA, Moreira VP, Graminha MAS, Lubec G, Gonzalez ERP, Cilli EM. Development of New Leishmanicidal Compounds via Bioconjugation of Antimicrobial Peptides and Antileishmanial Guanidines. ACS OMEGA 2023; 8:34008-34016. [PMID: 37744786 PMCID: PMC10515597 DOI: 10.1021/acsomega.3c04878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Leishmaniasis refers to a collection of diseases caused by protozoa from the Leishmania genus. These diseases, along with other parasitic afflictions, pose a significant public health issue, particularly given the escalating number of at-risk patients. This group includes immunocompromised individuals and those residing in impoverished conditions. The treatment of leishmaniasis is crucial, particularly in light of the mortality rate associated with nontreatment, which stands at 20-30,000 deaths per year globally. However, the therapeutic options currently available are limited, often ineffective, and potentially toxic. Consequently, the pursuit of new therapeutic alternatives is warranted. This study aims to design, synthesize, and evaluate the leishmanicidal activity of antimicrobial peptides functionalized with guanidine compounds and identify those with enhanced potency and selectivity against the parasite. Accordingly, three bioconjugates were obtained by using the solid-phase peptide synthesis protocol. Each proved to be more potent against intracellular amastigotes than their respective peptide or guanidine compounds alone and demonstrated higher selectivity to the parasites than to the host cells. Thus, the conjugation strategy employed with these compounds effectively contributes to the development of new molecules with leishmanicidal activity.
Collapse
Affiliation(s)
- Natalia
C. S. Costa
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Luana Ribeiro dos Anjos
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - João Victor
Marcelino de Souza
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | | | - Vitor Partite Moreira
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - Marcia A. S. Graminha
- School
of Pharmaceutical Sciences, São Paulo
State University (UNESP), 14800-903 Araraquara, São
Paulo, Brazil
| | - Gert Lubec
- Department
of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Eduardo Rene P. Gonzalez
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - Eduardo Maffud Cilli
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Ayusso GM, Lima MLD, da Silva Sanches PR, Santos IA, Martins DOS, da Conceição PJP, Carvalho T, da Costa VG, Bittar C, Merits A, Santos-Filho NA, Cilli EM, Jardim ACG, de Freitas Calmon M, Rahal P. The Dimeric Peptide (KKYRYHLKPF) 2K Shows Broad-Spectrum Antiviral Activity by Inhibiting Different Steps of Chikungunya and Zika Virus Infection. Viruses 2023; 15:v15051168. [PMID: 37243254 DOI: 10.3390/v15051168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.
Collapse
Affiliation(s)
- Gabriela Miranda Ayusso
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Maria Letícia Duarte Lima
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil
| | - Daniel Oliveira Silva Martins
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil
| | | | - Tamara Carvalho
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Cíntia Bittar
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| | | | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-060, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil
| | - Marilia de Freitas Calmon
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|