1
|
Mohammed MMD, Mohammed HS, El Wafa SAA, Ahmed DA, Heikal EA, Elgohary I, Barakat AM. Discovery of potent anti-toxoplasmosis drugs from secondary metabolites in Citrus limon (lemon) leaves, supported in-silico study. Sci Rep 2025; 15:624. [PMID: 39753625 PMCID: PMC11698829 DOI: 10.1038/s41598-024-82787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Toxoplasmosis induced by Toxoplasma gondii is a well-known health threat, that prompts fatal encephalitis increased with immunocompromised patients, in addition, it can cause chorioretinitis, microcephaly, stillbirth in the fetus and even led to death. Standard therapy uses sulfadiazine and pyrimethamine drugs revealed beneficial results during the acute stage, however, it has severe side effects. UPLC-ESI-MS/MS used to explore C. limon MeOH ext. constituents, which revealed a list of 41 metabolites of different classes encompasses; unsaturated fatty acid, tricarboxylic acids, phenolic aldehyde, phenolic acids, phenolic glycosides, coumarins, sesquiterpene lactone, limonoid, steroid and flavonoids. C. limon MeOH ext. and the isolates reduced significantly the number of T. gondii tachyzoites. Consequently, histopathological examination, proved significant reduction in the number of mononuclear inflammatory cells in the kidney and liver sections, besides, lowering the number of shrunken and degenerative neurons in the brain sections of infected mice. Molecular docking study was performed targeted certain receptors, which are important for the life cycle fundamentals for the parasite mobility including invasion and egress, and further molecular dynamics simulation was conducted to get insights into the structural changes of the formed complexes, along with a pharmacophoric mapping approach, that confirmed the need for a free hydroxyl group and/or a phenolic substituted one, in order to form HB, Hyd/Aro and ML interactions, through which, cell cycle disruption via iron chelation, could be achieved. In addition, the ADMIT properties of all identified metabolites were predicted.
Collapse
Affiliation(s)
- Magdy Mostafa Desoky Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Hala Sh Mohammed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Salwa A Abu El Wafa
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Doaa A Ahmed
- Medical Parasitology Department, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Elham A Heikal
- Medical Parasitology Department, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Islam Elgohary
- Department of Pathology, Agriculture Research Centre, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Ashraf M Barakat
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
2
|
Shendi SS, Selim SM, Sharaf SA, Gouda MA, Sallam HM, Sweed DM, Shafey DA. Anti-toxoplasmic effects of celecoxib alone and combined with spiramycin in experimental mice. Acta Trop 2024; 260:107448. [PMID: 39477047 DOI: 10.1016/j.actatropica.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Even though toxoplasmosis is a worldwide parasitic disease caused by Toxoplasma gondii (T. gondii), the available drugs used for the treatment of symptomatic toxoplasmosis have multiple drawbacks. So, there is a considerable need to discover new potential therapeutic agents. The current study aimed to assess the effect of celecoxib (CELE) alone or combined with spiramycin against chronic toxoplasmosis in experimentally infected mice. The study documented the reduction rate of T. gondii cysts in brain tissues and ultrastructural changes through transmission electron microscopy after treatment. We also investigated pathological changes in the brain, liver, lung, and spleen, as well as the expression of TGF-β, iNOS, and pSTAT-1 in brain tissues. Other markers for kidney function and serum levels of interleukins 10 and 12 were also assessed. The study reported a reduction rate of T. gondii brain cyst count of 32.9 % after CELE treatment, 71.7 % after spiramycin treatment, and 75.7 % after combined treatment. Furthermore, the CELE and spiramycin combination improved the ultrastructure and histopathology in brain tissues while decreasing TGF-β, iNOS, and pSTAT-1 expression. The combined therapy ameliorated the inflammation of the liver, lung, and spleen, upregulated the IL-12 level, reduced the IL-10 level, and was accompanied by a reduction in creatinine and urea in serum. In conclusion, CELE increased spiramycin therapeutic efficacy, and their combination showed a better response than spiramycin alone. Thus, the CELE combination with spiramycin represents a hopeful therapy against chronic toxoplasmosis.
Collapse
Affiliation(s)
- Sawsan S Shendi
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Sahar M Selim
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Soraya A Sharaf
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Marwa A Gouda
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Hebatallah M Sallam
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | - Dina M Sweed
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Dalia A Shafey
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
3
|
El-Kady AM, Elshazly H, Alsulami MN, Albohiri HH, Alshehri EA, Alfaifi MS, Mohamed K, Wakid MH, Gattan HS, Altwaim SA, Al-Megrin WAI, Almalki GH, Abdel-Rahman IAM, Elshabrawy HA, Younis S. Zingiber officinale Ameliorates Acute Toxoplasmosis-Induced Pathology in Mice. Acta Parasitol 2024; 69:1785-1800. [PMID: 39225734 DOI: 10.1007/s11686-024-00884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) infects one third of the world's population with significant illness, mainly among immunocompromised individuals and pregnant women. Treatment options for toxoplasmosis are limited which signifies the need for novel, potent, and safe therapeutic options. The goal of this study was to assess the effectiveness of the ethanolic extract of Zingiber officinale (Z. officinale) in treating mice infected with the RH T. gondii strain. MATERIALS AND METHODS Gas Chromatography/Mass Spectrometry (GC/MS) was used to identify components of ethanolic extract of Z. officinale. A total of 80 mice were randomly allocated into four experimental groups that contained 20 mice each. The first group was left uninfected (uninfected control), while three groups were infected with T. gondii RH virulent strain tachyzoites at 2500 tachyzoites/mouse. One infected group was left untreated (infected, untreated), whereas the other two groups were treated orally with either spiramycin (positive control) or Z. officinale ethanolic extract at doses of 200 mg/kg and 500 mg/kg, respectively for 5 days, starting the day of infection. Ten mice from each group were used to assess mice survival in different groups, whereas the other ten mice in each group were sacrificed on the 5th day post-infectin (dpi) to estimate the treatment efficacy by quantifying liver parasite load, liver function, nitric oxide (NO) production, and levels of antioxidant enzymes. Additionally, histopathological studies were performed to evaluate the therapeutic effect of Z. officinale treatment on toxoplasmosis-induced pathological alterations in liver, brain, and spleen. RESULTS Treatment with Z. officinale ethanolic extract extended the survival of mice till 9th dpi compared to 7th dpi in infected untreated mice. Higher percentage of mice survived in Z. officinale-treated group compared to spiramycin-treatment group at different time points. Liver parasite loads were significantly lower in Z. officinale extract-treated mice and spiramycin-treated mice compared to infected untreated mice which correlated with significantly lower levels of serum liver enzymes (ALT, AST) and nitric oxide (NO), as well as significantly higher catalase (CAT) antioxidant enzyme activity. Scanning electron microscopy (SEM) examination of tachyzoites from the peritoneal fluid revealed marked damage in tachyzoites from Z. officinale-treated group compared to that from infected untreated mice. Moreover, treatment with Z. officinale ethanolic extract alleviated infection-induced pathological alterations and restored normal tissue morphology of liver, brain, and spleen. CONCLUSION Our results demonstrated that Z. officinale treatment reduced parasite burden and reversed histopathological and biochemical alterations in acute murine toxoplasmosis. These findings support the potential utility of Z. officinale as a future effective natural therapeutic for toxoplasmosis. Further studies are needed to determine the effective active ingredient in Z. officinale extract that can be further optimized for treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, 83523, Egypt.
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Bu-raidah, Qassim, 52571, Saudi Arabia
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Haleema H Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman Abdullah Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Mashael S Alfaifi
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura 21 University, Mecca, 21961, Saudi Arabia
| | - Khalil Mohamed
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura 21 University, Mecca, 21961, Saudi Arabia
| | - Majed H Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Special Infectious Agents unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia.
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia
| | - Sarah A Altwaim
- Special Infectious Agents unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wafa Abdullah I Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ghaliah H Almalki
- Department of Biology, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Iman A M Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, 77304, USA.
| | - Salwa Younis
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
4
|
Zhu H, Li C, Jia L, Qiao J, El-Seedi HR, Zhang Y, Zhang H. Supercritical CO 2 extracts of propolis inhibits tumor proliferation and Enhances the immunomodulatory activity via activating the TLR4-MAPK/NF-κB signaling pathway. Food Res Int 2024; 196:115137. [PMID: 39614528 DOI: 10.1016/j.foodres.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 12/01/2024]
Abstract
Propolis is a natural immunomodulator with anticancer activity. This study investigated the immunomodulatory mechanism and anti-tumor activity of supercritical CO2 extracts of propolis (SEP) in tumor-bearing immunosuppression mice. We used cyclophosphamide (CTX) to construct the immunosuppressive mice model and then inoculated them with CT26 cells to build the CT26 tumor-bearing immunosuppression mice model. Upon treatment with SEP, tumor proliferation in mice was markedly suppressed, with tumor volumes decreasing from 1881.43 mm3 to 1049.95 mm3 and weights reducing from 2.07 g to 1.13 g. Concurrently, the immune system recovered well, and the spleen and thymus indexes increased significantly. The total T lymphocyte (CD3+ T cell) contents in the spleen and blood recovered from 11.88 % to 21.19 % and 15.32 % to 22.19 %, respectively. In addition, the CD4+ /CD8+ ratio has returned to a healthy level, 3.12 in the spleen and 5.42 in the blood. The levels of IL-1β, IL-6, and TNF-α were increased by 2.17, 2.76, and 7.15 times in the spleen, 2.76, 1.92, and 3.02 times in the serum. Moreover, the western blot results showed that SEP treatment increased the expression of toll-like receptor 4 (TLR4) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p65. These results indicated that SEP activated the immune activity of RAW 264.7 macrophages through the TLR4-mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway to exert immunomodulatory function and inhibit tumor proliferation. This study facilitated the further application of SEP as a potential immunomodulatory and anti-tumor functional food.
Collapse
Affiliation(s)
- Hequan Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunyang Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Lei Jia
- Xingjiang Yifan Biotechnology Co., LTD, Ili Kazakh Autonomous Prefecture, 835000, China
| | - Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Jiangsu Beevip Biotechnology Co., LTD, Taizhou 225300, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
5
|
Valizadeh GR, Mahboubian MM, Maghsoud AH, Mirzaei F, Haghi SM, Parvar FF, Fallah M. Effectiveness of Miltefosine Nanoemulsion Concerning the Treatment of Acute and Chronic Toxoplasmosis: In Vivo Study. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:314-324. [PMID: 39318821 PMCID: PMC11417982 DOI: 10.18502/ijpa.v19i3.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024]
Abstract
Background Toxoplasma gondii is one of the most common parasites worldwide. It is of great importance to identify new potential drugs that are effective and less harmful in pregnant women and newborns. We investigated nanoemulsion miltefosine (NEM) in treating experimental acute and chronic toxoplasmosis. Methods A combination of triacetin, Tween 80, and ethanol (1:2) was used for the development of NEM formulations. The size of NEM was calculated to be 17.463 nm by DLS and TEM. To investigate the performance of miltefosine (MLF), NEM, sulfadiazine (SDZ), and pyrimethamine (PYR) (positive control) in vivo, acute toxoplasmosis was induced in mice by an intraperitoneal injection of RH strain tachyzoites. After five days, the mice were examined for the number and condition of tachyzoites and histopathological changes in the liver and spleen. Chronic toxoplasmosis was investigated in rats and the number and size of brain cysts along with histopathological changes were assessed in different groups. Results The results of the in vivo assessment of drugs in acute toxoplasmosis showed the following order regarding a decrease in the number of tachyzoites and an increase in survival rate: SDZ&PYR > NEM > MLF. The effects of drugs on chronic toxoplasmosis showed a significant effect of NEM (50%) on reducing the number of cysts compared to SDZ&PYR (10%) and MLF (12%) and reducing the size of NEM brain cysts (21%) compared to SDZ&PYR (5 %) and MLF (8%). Conclusion Increasing the penetration of NEM through the blood-brain barrier (BBB) and subsequently reducing the number and size of T. gondii tissue cysts is a promising new drug in treating chronic toxoplasmosis.
Collapse
Affiliation(s)
- Gholam Reza Valizadeh
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mahdi Mahboubian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Maghsoud
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyedmousa Motavalli Haghi
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Foroughi Parvar
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Fallah
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Elmahallawy EK, Ali FAZ, Raya-Álvarez E, Fehaid A, Abd El-Razik KA, El Fadaly HAM, El-Khadragy MF, Sayed ASM, Soror AH, Alhegaili AS, Saleh AA, Alkhaldi AAM, Madboli AENA, Agil A, Barakat AM. Ameliorative effects of propolis and wheat germ oil on acute toxoplasmosis in experimentally infected mice are associated with reduction in parasite burden and restoration of histopathological changes in the brain, uterus, and kidney. Front Vet Sci 2024; 11:1357947. [PMID: 38496314 PMCID: PMC10940321 DOI: 10.3389/fvets.2024.1357947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Toxoplasmosis continues to be a prevalent parasitic zoonosis with a global distribution. This disease is caused by an intracellular parasite known as Toxoplasma gondii, and the development of effective novel drug targets to combat it is imperative. There is limited information available on the potential advantages of wheat germ oil (WGO) and propolis, both individually and in combination, against the acute phase of toxoplasmosis. In this study, acute toxoplasmosis was induced in Swiss albino mice, followed by the treatment of infected animals with WGO and propolis, either separately or in combination. After 10 days of experimental infection and treatment, mice from all groups were sacrificed, and their brains, uteri, and kidneys were excised for histopathological assessment. Additionally, the average parasite load in the brain was determined through parasitological assessment, and quantification of the parasite was performed using Real-Time Polymerase Chain Reaction targeting gene amplification. Remarkably, the study found that treating infected animals with wheat germ oil and propolis significantly reduced the parasite load compared to the control group that was infected but not treated. Moreover, the group treated with a combination of wheat germ oil and propolis exhibited a markedly greater reduction in parasitic load compared to the other groups. Similarly, the combination treatment effectively restored the histopathological changes observed in the brain, uterus, and kidney, and the scoring of these reported lesions confirmed these findings. In summary, the present results reveal intriguing insights into the potential therapeutic benefits of wheat germ oil and propolis in the treatment of acute toxoplasmosis.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Enrique Raya-Álvarez
- Rheumatology Department, Hospital Universitario San Cecilio, Av. de la Investigación s/n, Granada, Spain
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | | | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal S. M. Sayed
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Ashraf H. Soror
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Amira A. Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Abd El-Nasser A. Madboli
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, School of Medicine, University of Granada, Granada, Spain
| | | |
Collapse
|
7
|
Alanazi AD, Majeed QAH, Alnomasy SF, Almohammed HI. Potent In Vitro and In Vivo Effects of Stachys lavandulifolia Methanolic Extract against Toxoplasma gondii Infection. Trop Med Infect Dis 2023; 8:355. [PMID: 37505651 PMCID: PMC10384536 DOI: 10.3390/tropicalmed8070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The present study aimed to evaluate the in vitro, in vivo, and safety of Stachys lavandulifolia Vahl. methanolic extract (SLME) against acute toxoplasmosis caused by Toxoplasma gondii RH strain in mice. METHODS MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the in vitro effect of the SLME on T. gondii tachyzoites. Totally, 72 male BALB/c mice (40 mice for in vivo evaluation of SLME and 32 mice for its toxicity effects on liver and kidney serum enzymes) were used for the present investigation. At first, 40 mice were orally pre-treated with the SLME at doses of 25, 50, and 75 mg/kg/day for two weeks. Mice were checked daily, and the rate of survival and the mean number of tachyzoites were recorded. Liver lipid peroxidation (LPO) and nitric oxide (NO) levels, the effects on kidney and liver function, as well as the expression level of the proinflammatory cytokines such as interleukin-1β (IL-1β) and interferon-γ (IFN-γ), were studied by the quantitative real-time PCR. Flow cytometry analysis was performed on the effects of SLME on the detection of apoptotic and necrotic cells in T. gondii tachyzoites. RESULTS The SLME at the concentrations 75 and 150 µg/mL completely killed the tachyzoites after 2 hr of incubation. SLME at 25, 50, and 75 mg/kg/day increased the survival rate of infected mice by the sixth, seventh, and eighth days, respectively. SLME also significantly (p < 0.05) decreased the LPO and NO levels and upregulated the IL-1β and IFN-γ mRNA gene expression levels, whereas no considerable change was observed in the serum level of kidney and liver enzymes. Flow cytometry analysis revealed the prompted early and late apoptosis after exposure to T. gondii tachyzoites with various concentrations of SLME. CONCLUSION We found the relevant in vitro anti-Toxoplasma effects of SLME against T. gondii. Moreover, the results confirmed the promising in vivo prophylactic effects of SLME. SLME provokes the innate immune system, induces apoptosis, modulates the proinflammatory cytokines, and inhibits hepatic injury in infected mice. With all these descriptions, further surveys are required to support these findings and elucidate this plant's possible mechanisms of action.
Collapse
Affiliation(s)
- Abdullah D Alanazi
- Departmentof Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Qais A H Majeed
- Department of Science, College of Basic Education, PAAET, Aridiya, Kuwait City 23167, Kuwait
| | - Sultan F Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia
| | - Hamdan I Almohammed
- Department of Basic Science, Faculty of Medicine, Almaarfa University, Riyadh 11597, Saudi Arabia
| |
Collapse
|