1
|
Abonyi HN, Peter IE, Onwuka AM, Achile PA, Obi CB, Akunne MO, Ejikeme PM, Amos S, Akunne TC, Attama AA, Akah PA. Nanotoxicology: developments and new insights. Nanomedicine (Lond) 2025; 20:225-241. [PMID: 39723590 PMCID: PMC11731054 DOI: 10.1080/17435889.2024.2443385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
The use of nanoparticles (NPs) in treatment of diseases have increased exponentially recently, giving rise to the science of nanomedicine. The safety of these NPs in humans has also led to the science of nanotoxicology. Due to a dearth of both readily available models and precise bio-dispersion characterization techniques, nanotoxicological research has obviously been constrained. However, the ensuing years were notable for the emergence of improved synthesis methods and characterization tools. Major advances have been made in linking certain physical variables, paralleling improvements in characterization size, shape, or coating factors to the resulting physiological reactions. Although significant progress has been a contribution to the development of nanotoxicology, however, it faces numerous difficulties and technical constraints distinct from those of conventional toxicological assessment as it attempts to improve the therapeutic effects of medicines. Determining thorough characterization standards, standardizing dosimetry, assessing the kinetics of ions dissolving and enhancing the accuracy of in vitro-in vivo correlation efficiency, also defining restrictions on exposure protection are some of the most important and pressing concerns. This article will explore the past advancement and potential prospects of nanotoxicology, standard models, emphasizing significant findings from earlier studies and examining current challenges, giving insight on the way forward.
Collapse
Affiliation(s)
- Henry N. Abonyi
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, State University of Medical and Applied Sciences, Igbo-Eno, Nigeria
| | - Ikechukwu E. Peter
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Akachukwu M. Onwuka
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Paul A. Achile
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics University of Nigeria Nsukka, Nsukka, Nigeria
| | - Chinonso B. Obi
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Maureen O. Akunne
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, Nigeria
| | - Paul M. Ejikeme
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Samson Amos
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - Theophine C. Akunne
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - Anthony A. Attama
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics University of Nigeria Nsukka, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutics and Pharmaceutical Technology, State University of Medical and Applied Sciences, Igbo-Eno, Nigeria
| | - Peter A. Akah
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Yang S, Aggarwal K, Jurczyszak J, Brown N, Sridhar S. Nanomedicine Therapies for Pediatric Diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1996. [PMID: 39420230 PMCID: PMC11493394 DOI: 10.1002/wnan.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
In 2020, the top 10 causes of death among children and adolescents between the ages of 1 and 19 years old included cancer, congenital anomalies, heart disease, and chronic respiratory disease; all these conditions are potentially treatable with medical intervention. However, children exhibit specific physiological and developmental characteristics that can significantly impact drug pharmacokinetics, pharmacodynamics, and safety profile. These factors illustrate the importance of a heightened focus on pediatric drug development. Traditional drugs lack proper circulation, permeability, targeting, accumulation, and release, and they often require dose adjustments or modifications, which can result in suboptimal therapeutic outcomes and increased risks of adverse effects in pediatric patients. Nanomedicines have emerged as efficient drug delivery systems because of their unique properties, which can improve the solubility and stability of drugs by encapsulating them in different forms of nanoparticles. This review discusses the challenges of pediatric therapy, and the current state of nanomedicines for pediatric diseases in terms of Food and Drug Administration-approved nanomedicines, the types of diseases treated or diagnosed, and preclinical studies that have the potential to be translated to the clinic. In summary, nanomedicine holds significant potential for addressing the unique and pressing challenges associated with diagnosing and treating pediatric diseases.
Collapse
Affiliation(s)
- Shicheng Yang
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Kushi Aggarwal
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jillian Jurczyszak
- Cancer Nanomedicine Co-Ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, Massachusetts, USA
| | - Needa Brown
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Srinivas Sridhar
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
4
|
Isazadeh H, Oruji F, Shabani S, Behroozi J, Nasiri H, Isazadeh A, Akbari M. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep 2023; 50:9529-9543. [PMID: 37741808 DOI: 10.1007/s11033-023-08749-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 09/25/2023]
Abstract
Advancements in the clinical applications of small interfering RNA (siRNA) in cancer therapy have opened up new possibilities for precision medicine. siRNAs, as powerful genetic tools, have shown potential in targeting and suppressing the expression of specific genes associated with cancer progression. Their effectiveness has been further enhanced by incorporating them into nanoparticles, which protect siRNAs from degradation and enable targeted delivery. However, despite these promising developments, several challenges persist in the clinical translation of siRNA-based cancer therapy. This comprehensive review explores the progress and challenges associated with the clinical applications of siRNA in cancer therapy. This review highlights the use of siRNA-loaded nanoparticles as an effective delivery system for optimizing siRNA efficacy in various types of carcinomas and the potential of siRNA-based therapy as a genetic approach to overcome limitations associated with conventional chemotherapeutic agents, including severe drug toxicities and organ damage. Moreover, it emphasizes on the key challenges, including off-target effects, enzymatic degradation of siRNAs in serum, low tumor localization, stability issues, and rapid clearance from circulation that need to be addressed for successful clinical development of siRNA-based cancer therapy. Despite these challenges, the review identifies significant avenues for advancing siRNA technology from the laboratory to clinical settings. The ongoing progress in siRNA-loaded nanoparticles for cancer treatment demonstrates potential antitumor activities and safety profiles. By understanding the current state of siRNA-based therapy and addressing the existing challenges, we aim to pave the way for translating siRNA technology into effective oncologic clinics as an improved treatment options for cancer patients.
Collapse
Affiliation(s)
- Houman Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Farshid Oruji
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shima Shabani
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Mol Biol Rep 2023; 50:9663-9676. [PMID: 37828275 DOI: 10.1007/s11033-023-08809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
As far as health issues are concerned, cancer causes one out of every six deaths around the globe. As potent therapeutics are still awaited for the successful treatment of cancer, some unconventional treatments like radiotherapy, surgery, and chemotherapy and some advanced technologies like gene therapy, stem cell therapy, natural antioxidants, targeted therapy, photodynamic therapy, nanoparticles, and precision medicine are available to diagnose and treat cancer. In the present scenario, the prime focus is on developing efficient nanomedicines to treat cancer. Although stem cell therapy has the capability to target primary as well as metastatic cancer foci, it also has the ability to repair and regenerate injured tissues. However, nanoparticles are designed to have such novel therapeutic capabilities. Targeted therapy is also now available to arrest the growth and development of cancer cells without damaging healthy tissues. Another alternative approach in this direction is photodynamic therapy (PDT), which has more potential to treat cancer as it does minimal damage and does not limit other technologies, as in the case of chemotherapy and radiotherapy. The best possible way to treat cancer is by developing novel therapeutics through translational research. In the present scenario, an important event in modern oncology therapy is the shift from an organ-centric paradigm guiding therapy to complete molecular investigations. The lacunae in anticancer therapy may be addressed through the creation of contemporary and pertinent cancer therapeutic techniques. In the meantime, the growth of nanotechnology, material sciences, and biomedical sciences has revealed a wide range of contemporary therapies with intelligent features, adaptable functions, and modification potential. The development of numerous therapeutic techniques for the treatment of cancer is summarized in this article. Additionally, it can serve as a resource for oncology and immunology researchers.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Alok Bhardwaj
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| |
Collapse
|
6
|
Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V. Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering (Basel) 2023; 10:760. [PMID: 37508788 PMCID: PMC10376516 DOI: 10.3390/bioengineering10070760] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh Kumar Singh
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kajal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
8
|
Sunga GM, Hartgerink J, Sikora AG, Young S. Enhancement of Immunotherapies in Head and Neck Cancers Using Biomaterial-Based Treatment Strategies. Tissue Eng Part C Methods 2023; 29:257-275. [PMID: 37183412 PMCID: PMC10282827 DOI: 10.1089/ten.tec.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a challenging disease to treat because of typically late-stage diagnoses and tumor formation in difficult-to-treat areas, sensitive to aggressive or invasive treatments. To date, HNSCC treatments have been limited to surgery, radiotherapy, and chemotherapy, which may have significant morbidity and often lead to long-lasting side effects. The development of immunotherapies has revolutionized cancer treatment by providing a promising alternative to standard-of-care therapies. However, single-agent immunotherapy has been only modestly effective in the treatment of various cancers, including HNSCC, with most patients receiving no overall benefit or increased survival. In addition, single-agent immunotherapy's limitations, namely immune-related side effects and the necessity of multidose treatments, must be addressed to further improve treatment efficacy. Biocompatible biomaterials, in combination with cancer immunotherapies, offer numerous advantages in the concentration, localization, and controlled release of drugs, cancer antigens, and immune cells. Biomaterial structures are diverse, and their design can generally be customized to enhance immunotherapy response. In preclinical settings, the use of biomaterials has shown great promise in improving the efficacy of single-agent immunotherapy. Herein, we provide an overview of current immunotherapy treatments for HNSCC and their limitations, as well as the potential applications of biomaterials in enhancing cancer immunotherapies. Impact Statement Advances in anticancer immunotherapies for the past 30 years have yielded exciting clinical results and provided alternatives to long-standing standard-of-care treatments, which are associated with significant toxicities and long-term morbidity. However, patients with head and neck squamous cell carcinoma (HNSCC) have not benefited from immunotherapies as much as patients with other cancers. Immunotherapy limitations include systemic side effects, therapeutic resistance, poor delivery kinetics, and limited patient responses. Biomaterial-enhanced immunotherapies, as explored in this review, are a potentially powerful means of achieving localized drug delivery, sustained and controlled drug release, and immunomodulation. They may overcome current treatment limitations and improve patient outcomes and care.
Collapse
Affiliation(s)
- Gemalene M. Sunga
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Jeffrey Hartgerink
- Department of Chemistry, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Andrew G. Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
9
|
Sandal S, Singh S, Bansal G, Kaur R, Mogilicherla K, Pandher S, Roy A, Kaur G, Rathore P, Kalia A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int J Mol Sci 2023; 24:ijms24119161. [PMID: 37298113 DOI: 10.3390/ijms24119161] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The spotted bollworm Earias vittella (Lepidoptera: Nolidae) is a polyphagous pest with enormous economic significance, primarily affecting cotton and okra. However, the lack of gene sequence information on this pest has a significant constraint on molecular investigations and the formulation of superior pest management strategies. An RNA-seq-based transcriptome study was conducted to alleviate such limitations, and de novo assembly was performed to obtain transcript sequences of this pest. Reference gene identification across E. vittella developmental stages and RNAi treatments were conducted using its sequence information, which resulted in identifying transcription elongation factor (TEF), V-type proton ATPase (V-ATPase), and Glyceraldehyde -3-phosphate dehydrogenase (GAPDH) as the most suitable reference genes for normalization in RT-qPCR-based gene expression studies. The present study also identified important developmental, RNAi pathway, and RNAi target genes and performed life-stage developmental expression analysis using RT-qPCR to select the optimal targets for RNAi. We found that naked dsRNA degradation in the E. vittella hemolymph is the primary reason for poor RNAi. A total of six genes including Juvenile hormone methyl transferase (JHAMT), Chitin synthase (CHS), Aminopeptidase (AMN), Cadherin (CAD), Alpha-amylase (AMY), and V-type proton ATPase (V-ATPase) were selected and knocked down significantly with three different nanoparticles encapsulated dsRNA conjugates, i.e., Chitosan-dsRNA, carbon quantum dots-dsRNA (CQD-dsRNA), and Lipofectamine-dsRNA conjugate. These results demonstrate that feeding nanoparticle-shielded dsRNA silences target genes and suggests that nanoparticle-based RNAi can efficiently manage this pest.
Collapse
Affiliation(s)
- Shelja Sandal
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Gulshan Bansal
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Suneet Pandher
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Gurmeet Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Pankaj Rathore
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| |
Collapse
|