1
|
Hu D, Zeng Q, Wang H, Jiang W. Arginine Hydrochloride Reduce Rectal Mucosal Irritation of Sodium Aescinate: Molecular Docking, Physical Properties, Anti-Hemorrhoidal Activity, Safety and Topical Gel Formulations Investigation. Pharmaceutics 2024; 16:1498. [PMID: 39771477 PMCID: PMC11676831 DOI: 10.3390/pharmaceutics16121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Sodium aescinate (SA) is commonly used topically due to its anti-inflammatory, anti-edematous, and anti-swelling properties. However, the clinical application of SA is limited by strong irritation, and cannot be used on the damaged skin and mucous membrane. This study aimed to investigate whether arginine hydrochloride (Arg·HCl) could reduce the rectal mucosal irritation of SA through the formation of a gel. Methods: Molecular docking was first used to explore potential interactions between SA and Arg·HCl. Gels for rectal administration were then formulated by combining SA with various ratios of Arg·HCl (from 1:0 to 1:10). In vitro tests, including pH, centrifuge stability, viscosity, and spreadability analysis, were conducted. The optimal gel formulation was determined based on rectal mucosal irritation tests and anti-inflammatory experiments. Additionally, the anti-hemorrhoidal characteristics and safety of the optimal gel in terms of acute toxicity and dermal sensitivity were evaluated. Results: The optimal SA to Arg·HCl ratio of 1:6 (F5-SA gel) was identified, significantly reducing rectal mucosal irritation while enhancing anti-inflammatory activity. The F5-SA gel demonstrated high efficacy against hemorrhoids, notably promoting anal ulcer healing. When administered rectally to rabbits at a dose of 132 mg·kg-1·d-1 (198 times the recommended therapeutic dose), no other obvious side effects were observed except a significant reduction in food intake on the day of administration. In addition, the gel did not induce dermal sensitivity. Conclusions: The F5-SA gel is a promising formulation that can reduce irritation and toxic side effects, and enhance the therapeutic effect to some extent, ultimately achieving a safer and more effective rectal delivery system for SA.
Collapse
Affiliation(s)
| | | | | | - Wei Jiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (D.H.)
| |
Collapse
|
2
|
Bradic J, Petrovic A, Nikolic M, Nedeljkovic N, Andjic M, Kladar N, Bolevich S, Jakovljevic V, Kocovic A. Newly Developed Semi-Solid Formulations Containing Mellilotus officinalis Extract: Characterization, Assessment of Stability, Safety, and Anti-Inflammatory Activity. Pharmaceutics 2024; 16:1003. [PMID: 39204348 PMCID: PMC11359922 DOI: 10.3390/pharmaceutics16081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Melilotus officinalis has been traditionally used as an anti-inflammatory agent; nevertheless, a comprehensive evaluation of its efficacy and safety and comparison with standard drugs are lacking. Taking into consideration concerns with current therapies, like efficacy limitations, side effects, and resistance, we aimed to develop a natural gel and cream based on Melilotus officinalis extract and explore their anti-inflammatory potential. After the chemical analysis of the extract confirmed the presence of coumarin, p-coumaric acid, gallic acid, and quercetin, formulations were prepared and subjected to physical and chemical stability evaluations over 6 months. The safety potential was tested in rats, while the anti-inflammatory activity was assessed both via in silico tests and in a rat model of inflammation. The examined formulations showed stable physical characteristics at the defined storage conditions and did not exert any sign of adverse skin reaction. The gel formulation exhibited a remarkable effect in inflammation reduction comparable with hydrocortisone. The in silico results suggest that coumarin, p-coumaric, and gallic acid bind to COX-1 and COX-2 with a lower affinity compared to diclofenac. On the other hand, quercetin demonstrated comparable inhibitory activity and stronger interaction compared to the control drug. Our results indicate that the examined formulations are stable and safe and may be promising dermal products for the alleviation of inflammatory skin conditions.
Collapse
Affiliation(s)
- Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.B.); (A.P.); (M.N.); (N.N.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.B.); (A.P.); (M.N.); (N.N.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Milos Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.B.); (A.P.); (M.N.); (N.N.); (A.K.)
| | - Nikola Nedeljkovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.B.); (A.P.); (M.N.); (N.N.); (A.K.)
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.B.); (A.P.); (M.N.); (N.N.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Nebojsa Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Center for Medical and Pharmaceutical Investigations and Quality Control, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Stefani Bolevich
- Department of Pathological Physiology, 1st Moscow State Medical, University I.M. Sechenov, 119991 Moscow, Russia;
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University I.M. Sechenov, 119991 Moscow, Russia
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.B.); (A.P.); (M.N.); (N.N.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| |
Collapse
|
3
|
Stolić Jovanović A, Tadić VM, Martinović M, Žugić A, Nešić I, Blagojević S, Jasnić N, Tosti T. Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics 2024; 16:962. [PMID: 39065659 PMCID: PMC11280113 DOI: 10.3390/pharmaceutics16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
L-ascorbic acid represents one of the most potent antioxidant, photoprotective, anti-aging, and anti-pigmentation cosmeceutical agents, with a good safety profile. However, the main challenge is the formulation of stable topical formulation products, which would optimize the penetrability of L-ascorbic acid through the skin. The aim of our research was to evaluate the performance of ascorbyl palmitate on the skin, incorporated in creams and emulgels (2%) as carriers, as well as to determine the impact of its incorporation into liposomes on the penetration profile of this ingredient. Tape stripping was used to study the penetration of ascorbyl palmitate into the stratum corneum. In addition, the sensory and textural properties of the formulations were determined. The liposomal formulations exhibited a better penetration profile (p < 0.05) of the active substance compared to the non-liposomal counterpart, leading to a 1.3-fold and 1.2 fold-increase in the total amount of penetrated ascorbyl palmitate in the stratum corneum for the emulgel and cream, respectively. Encapsulation of ascorbyl palmitate into liposomes led to an increase in the adhesiveness and density of the prepared cream and emulgel samples. The best spreadability and absorption during application were detected in liposomal samples. The obtained results confirmed that liposomal encapsulation of ascorbyl palmitate improved dermal penetration for both the cream and emulgel formulations.
Collapse
Affiliation(s)
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia;
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Beograd, Serbia;
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| |
Collapse
|
4
|
Mazurkeviciute A, Matulyte I, Ivaskiene M, Zilius M. Modeling, the Optimization of the Composition of Emulgels with Ciclopirox Olamine, and Quality Assessment. Polymers (Basel) 2024; 16:1816. [PMID: 39000671 PMCID: PMC11244097 DOI: 10.3390/polym16131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The design and development of pharmaceutical products require specific knowledge, time, and investment. Response surface methodology (RSM) is a widely used technique in the design of experiments (DoE) to optimize various processes and products. The aim of this study was to model and produce experimental emulgels containing 1% ciclopirox olamine and to evaluate their physical, rheological, and mechanical properties and their ability to release ciclopirox olamine. The objective was to optimize the composition of the experimental emulgel containing 1% ciclopirox olamine by applying a central composite design based on selected criteria. The surfactant (polysorbate 80) had the greatest influence on the physical, rheological, and mechanical properties of the emulgels, as well as on the release of ciclopirox olamine from these systems. During the optimization process, an emulgel of optimal composition was generated containing 38.27% mineral oil, 6.56% polysorbate 80, and 55.17% hydrogel containing 1% ciclopirox olamine, meeting specified criteria (dependent variables) including the maximum flux of ciclopirox olamine, the minimum sol-gel transition temperature (Tsol/gel), and the minimum particle size of the oil phase. The oil phase particle size (D50) of this emulgel was determined to be 0.337 µm, the system Tsol/gel was 9.1 °C, and the flux of ciclopirox olamine from this gel matrix was calculated to be 1.44 mg/cm2. This emulgel of optimal composition could be used to treat fungal skin diseases.
Collapse
Affiliation(s)
- Agne Mazurkeviciute
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Inga Matulyte
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Marija Ivaskiene
- Dr. L. Kraučeliūnas Small Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania;
| | - Modestas Zilius
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| |
Collapse
|
5
|
Petrovic B, Petrovic A, Bijelic K, Stanisic D, Mitrovic S, Jakovljevic V, Bolevich S, Glisovic Jovanovic I, Bradic J. From Nature to Healing: Development and Evaluation of Topical Cream Loaded with Pine Tar for Cutaneous Wound Repair. Pharmaceutics 2024; 16:859. [PMID: 39065556 PMCID: PMC11279966 DOI: 10.3390/pharmaceutics16070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the numerous efforts to find an appropriate therapeutic modality, diabetic wounds remain a global unsolved problem. Therefore, our study aimed to develop a topical formulation loaded with pine tar and to investigate its wound-healing capacity. After phytochemical profiling of pine tar, an oil-in-water emulsion with 1% pine tar was prepared. The physical, chemical, and microbiological stability of prepared pine tar cream (PTC) was assessed during six months. Additionally, safety potential was examined in healthy rats, while wound-healing potential was accessed by creating excision wounds in diabetic rats. Diabetic animals were divided into four groups: untreated or topically treated with either the cream base, PTC, or silver sulfadiazine cream. Wound healing was monitored at the following time points (0, 7, 14, and 21 days) through macroscopic, biochemical, and histological examinations. Our PTC formula showed good physicochemical properties and remained stable and compatible for cutaneous application. PTC showed a remarkable increase in wound closure rate and led to attenuation of morphological alterations in skin samples. These findings were associated with significantly improved redox status and enhanced hydroxyproline levels in PTC relative to the untreated and cream base groups. Our results demonstrated that PTC might serve as a promising tool for the management of diabetic wounds.
Collapse
Affiliation(s)
- Branislav Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Katarina Bijelic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Sergej Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Ivana Glisovic Jovanovic
- Orthopedic and Traumatology University Clinic, Clinical Center of Serbia, Dr Koste Todorovica 26, 11000 Belgrade, Serbia;
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| |
Collapse
|
6
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
7
|
Jokubaite M, Pukenaite G, Marksa M, Ramanauskiene K. Balsam Poplar Buds Extracts-Loaded Gels and Emulgels: Development, Biopharmaceutical Evaluation, and Biological Activity In Vitro. Gels 2023; 9:821. [PMID: 37888394 PMCID: PMC10606801 DOI: 10.3390/gels9100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Balsam poplar buds have been used for wound healing and treating irritated skin in traditional medicine. Balsam poplar buds extracts exhibit anti-inflammatory, antioxidant, and antimicrobial effects. In recent years, scientific research has begun to validate some of these traditional uses, leading to an increased interest in balsam poplar buds as a potential source of natural remedies in modern medicine. The study aims to simulate semi-solid pharmaceutical forms with balsam poplar buds extract and evaluate their quality through biopharmaceutical research. The active compounds identified in Lithuanian poplar buds were p-coumaric acid, cinnamic acid, caffeic acid, galangin, pinocembrin, pinobanksin, and salicin. In gels, pH values ranged from 5.85 ± 0.05 to 5.95 ± 0.07. The determined pH values of emulgels ranged from 5.13 ± 0.05 to 5.66 ± 0.15. After 6 h, the release of active compounds from gels and emulgels ranged from 47.40 ± 2.41% to 71.17 ± 3.54. p-coumaric acid dominates in the balsam poplar buds extracts. The pH values of the prepared sem-solid pharmaceutical forms are suitable for use on the skin. The viscosity of the formulations depends on the amount of gelling agent. All formulations showed antioxidant activity. It is relevant to conduct a more extensive study on the influence of the chosen carrier on the release of active compounds from semi-solid formulations with an extract of balsam poplar buds.
Collapse
Affiliation(s)
- Monika Jokubaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Greta Pukenaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| | - Mindaugas Marksa
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| |
Collapse
|
8
|
Inal O, Amasya G, Sezgin Bayindir Z, Yuksel N. Development and quality assessment of glutathione tripeptide loaded niosome containing carbopol emulgels as nanocosmeceutical formulations. Int J Biol Macromol 2023; 241:124651. [PMID: 37119885 DOI: 10.1016/j.ijbiomac.2023.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
This study focuses on the preparation, physicopharmaceutical and mechanical characterization of reduced glutathione tripeptide loaded niosome containing emulgels as a novel nanocosmeceutical product. Prepared emulgel formulations were mainly composed of oily phase containing different lipids such as glycerine dibehenate, cetyl alcohol, cetearyl alcohol, etc., and aqueous phase containing Carbopol934® as gelling agent. Niosomal lipidic vesicles prepared from Span 60 and cholesterol were subsequently incorporated into optimum emulgel formulations. The pH, viscosity, and textural/mechanical properties of emulgels were examined before and after the incorporation of niosomes. The viscoelasticity and morphological characterization were performed on the final formulation before the packed formulation's microbiological stability test. The hardness and compressibility results ensured easy removal of the emulgel from the container. Due to the carboxyl groups of Carbopol934®, moderate adhesiveness with good cohesiveness was achieved. The rheological characteristics of the emulgels were estimated by oscillatory testing and the data fitted with the Herschel-Bulkley model. Thus, the viscoelastic properties and shear-thinning flow of emulgels were demonstrated. The final formulation was microbiologically stable, and pathogens or skin-irritating allergens were not detected. An anti-aging cosmeceutical preparation containing glutathione tripeptide loaded lipid-based niosome dispersion, suitable for topical use due to its textural and viscosity properties, was successfully produced.
Collapse
Affiliation(s)
- Ozge Inal
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Gulin Amasya
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Zerrin Sezgin Bayindir
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Nilufer Yuksel
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| |
Collapse
|