1
|
Li L, Zhang J, Zhang Y, Zhao R, Yang F, Yan Y, Wang Q, Xie M. Biofilm-modified Prussian blue improves memory function in late-stage Alzheimer's disease mice with triple therapy. Int J Pharm 2025; 670:125112. [PMID: 39732217 DOI: 10.1016/j.ijpharm.2024.125112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM). Prussian blue nanoparticles (PB NPs) are capable of chelating Cu2+ and reducing ROS. Macrophage membranes (MM) have advantages over liposomal and erythrocyte membrane carriers, including inflammatory targeting capabilities and more effective immune evasion. Concurrently, the excellent photothermal ability of PB NPs can briefly open the blood-brain barrier (BBB) under near-infrared laser irradiation, which improves the transport efficiency of PB NPs/MM across the BBB and ablates Aβ deposition, thus achieving optimal therapeutic efficacy. In vitro experiments demonstrated that PB NPs/MM is a multifunctional nanosystem, which can effectively inhibit Cu2+-induced Aβ monomers aggregation, photothermally depolymerize Aβ fibrils, and attenuate oxidative stress through the combined treatment of chelating metals, photothermal therapy and scavenging ROS. In behavioral experiments, it also significantly improved the cognitive and learning deficits in late-stage APP/PS1 mice, thereby providing new ideas for the treatment of late-stage AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lianxin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jiayang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yuewen Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ruixin Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Fengmei Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yujiao Yan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Qi Wang
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China.
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
2
|
Guo R, Li D, Li F, Ji L, Liu H, Qiao H, Lv Z, Tang Y, Wang D. Effects of whole-head 810 nm near-infrared therapy on cognitive and neuropsychiatric symptoms in Alzheimer's disease: A pilot study. J Alzheimers Dis 2025:13872877251313819. [PMID: 39910867 DOI: 10.1177/13872877251313819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by significant cognitive and behavioral impairments. Near-infrared (NIR) light treatment has shown potential in cognitive improvement in previous studies. However, clinical trials of NIR for AD remain limited. OBJECTIVE This study investigated the safety and effects of whole-head 810 nm NIR therapy in AD patients, including long-term efficacy. METHODS An open-label pilot study on whole-head NIR treatment for AD patients was conducted. Nine AD patients completed 4-month treatment (810 nm, 100 mW/cm², 30 min/session, 6 sessions weekly). Safety and efficacy were evaluated at baseline, months 2 and 4, and 2-month post-treatment. RESULTS After four months of whole-head NIR treatment, mean changes from baseline on the Mini-Mental State Examination were 3.2 (p = 0.02). Mean changes from baseline on the Alzheimer's Disease Assessment Scale-Cognitive were -5.0 (p = 0.05), mean changes from baseline on the Montreal Cognitive Assessment were 1.9 (p = 0.12). Mean changes from baseline on the Neuropsychiatric Inventory were -4.2 (p = 0.47). These benefits were sustained two months at least. With no device-related adverse effects were reported. CONCLUSIONS Whole-head 810 nm NIR light is safe and offers promising benefits for AD patients. To fully confirm its efficacy, durability, and underlying mechanisms, further large-scale randomized controlled trials are necessary.
Collapse
Affiliation(s)
- Rong Guo
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Deyu Li
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Software Development Environment, State Key Laboratory of Virtual Reality Technology and System, Beihang University, Beijing, China
| | - Fang Li
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Linna Ji
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Hongying Liu
- Rehabilitation Hospital Affiliated to National Rehabilitation Assistive Devices Research Center, Beijing, China
| | - Huiting Qiao
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zeping Lv
- Rehabilitation Hospital Affiliated to National Rehabilitation Assistive Devices Research Center, Beijing, China
- Key Laboratory of Assistive Technology for Rehabilitation of Elderly Dysfunction, Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Daifa Wang
- School of Biological Science and Medical Engineering, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Jiangsu Danyang Huichuang Medical Equipment Co., Ltd, Jiangsu, China
| |
Collapse
|
3
|
Dong S, Zhang R, Xue J, Suo Y, Wei X. Quantitative simulation of near-infrared light treatment for Alzheimer's disease using patient-individualized optical-parametric phantoms. NEUROPHOTONICS 2025; 12:015010. [PMID: 39968373 PMCID: PMC11833699 DOI: 10.1117/1.nph.12.1.015010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Significance Alzheimer's disease (AD) is a brain disorder characterized by its multifactorial nature and complex pathogenesis, highlighting the necessity for multimodal and individualized interventions. Among emerging therapies, near-infrared (NIR) light treatment shows promise as a therapeutic modality for AD. However, existing clinical studies lack sufficient data on light dosimetry, parameter optimization, and dose-response. Aim A versatile framework was developed to enable patient-individualized Monte Carlo simulation. A standardized dataset was established, including digital phantoms derived from 20 AD patients who received NIR light treatment. Approach The phantoms were synthesized and mapped with multispectral optical parameters, integrating cortical parcellation, subcortical segmentation, and sparse annotation. Structure-related light fluence pathways and dose-response relationships were elucidated using simulation results and cognitive/functional assessments. Results The capability for enhancing simulation fidelity and exploring dose-response relationships was verified using standard templates and clinical data. Linear independence was identified between changes in activities of daily living scale scores and energy deposition in gray matter. Conclusions The framework offers a solution toward dose-response analysis, parameter optimization, and safety control in the clinical translation for multiple treatment paradigms, demonstrating promise for individualized, standardized, and precise intervention planning.
Collapse
Affiliation(s)
- Sihan Dong
- Peking University, Institute of Medical Technology and Cancer Hospital, Beijing, China
- Peking University, Institute of Advanced Clinical Medicine, Beijing, China
- Peking University, Department of Biomedical Engineering, Beijing, China
| | - Rui Zhang
- Peking University, Institute of Medical Technology and Cancer Hospital, Beijing, China
- Peking University, Institute of Advanced Clinical Medicine, Beijing, China
- Peking University, Department of Biomedical Engineering, Beijing, China
| | - Jun Xue
- Huashan Hospital, Fudan University, Shanghai Medical College, Department of Neurosurgery, Shanghai, China
| | - Yuanzhen Suo
- Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, China
- Healthy Life Innovation Medical Technology Co., Ltd, Wuxi, China
| | - Xunbin Wei
- Peking University, Institute of Medical Technology and Cancer Hospital, Beijing, China
- Peking University, Institute of Advanced Clinical Medicine, Beijing, China
- Peking University, Department of Biomedical Engineering, Beijing, China
- Peking University International Cancer Institute, Beijing, China
| |
Collapse
|
4
|
Negi M, Amulya E, Phatale V, Abraham N, Hedaoo A, Srinivasarao DA, Srivastava S. Surface engineered nano architectonics: An evolving paradigm for tackling Alzheimer's disease. Life Sci 2024; 358:123155. [PMID: 39433085 DOI: 10.1016/j.lfs.2024.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD. However, the major pitfalls in managing AD include tight junctions in the endothelial cells of the blood-brain barrier (BBB), diminished neuronal bioavailability, enzymatic degradation and reduced stability of the therapeutic moiety. In an effort to surmount the drawbacks mentioned above, researchers shifted their focus toward nanocarriers (NCs). Nevertheless, non-specific targeting of NCs imparts toxicity to the peripheral organs, thereby reducing the bioavailability of therapeutic moiety at the target site. To unravel this unmet clinical need, scientists came up with the idea of a novel intriguing strategy of surface engineering by targeting ligands. Surface-decorated NCs provide targeted drug delivery, controlled drug release, enhanced penetration and bioavailability. In this state-of-the-art review, we have highlighted in detail various molecular signalling pathways involved in AD pathogenesis. The significance of surface functionalization and its application in AD management have been deliberated. We have elaborated on the regulatory bottlenecks and clinical hurdles faced during lab-to-industrial scale translation along with possible solutions.
Collapse
Affiliation(s)
- Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
5
|
Zulkifli SZ, Pungot NH, Saaidin AS, Jani NA, Mohammat MF. Synthesis and diverse biological activities of substituted indole β-carbolines: a review. Nat Prod Res 2024; 38:3793-3806. [PMID: 37770197 DOI: 10.1080/14786419.2023.2261141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
β-Carboline bearing indole is one of the heterocyclic compounds that play a vital role in medicinal chemistry with various pharmacological effects such as anticancer, anti-acetylcholinesterase, anti-inflammation, antimalarial, antibacterial, anti-diabetic, and antioxidant. Over the last two decades, many studies on the synthesis and biological activity of indole β-carboline compounds have been conducted yet there is no appropriate data summary has been presented. Thus, the goal of this review was to highlight the synthesis pathway and bioactivity of substituted indole β-carboline reported from 2005 to date. In addition, this will encourage further investigation into the synthesis and evaluation of new indole β-carboline, in the hope of contributing to the development of potentially new medications for the treatment of various ailments.
Collapse
Affiliation(s)
- Siti Zafirah Zulkifli
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Noor Hidayah Pungot
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Nor Akmalazura Jani
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
6
|
Wang M, Dinarvand D, Chan CTY, Bragin A, Li L. Photobiomodulation as a Potential Treatment for Alzheimer's Disease: A Review Paper. Brain Sci 2024; 14:1064. [PMID: 39595827 PMCID: PMC11591719 DOI: 10.3390/brainsci14111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, is a leading neurodegenerative disorder currently affecting approximately 55 million individuals globally, a number projected to escalate to 139 million by 2050. Despite extensive research spanning several decades, the cure for AD remains at a developing stage. The only existing therapeutic options are limited to symptom management, and are often accompanied by adverse side effects. The pathological features of AD, including the accumulation of beta-amyloid plaques and tau protein tangles, result in progressive neuronal death, synaptic loss, and brain atrophy, leading to significant cognitive decline and a marked reduction in quality of life. OBJECTIVE In light of the shortcomings of existing pharmacological interventions, this review explores the potential of photobiomodulation (PBM) as a non-invasive therapeutic option for AD. PBM employs infrared light to facilitate cellular repair and regeneration, focusing on addressing the disease's underlying biomechanical mechanisms. METHOD This paper presents a comprehensive introduction to the mechanisms of PBM and an analysis of preclinical studies evaluating its impact on cellular health, cognitive function, and disease progression in AD.The review provides a comprehensive overview of the various wavelengths and application methods, evaluating their efficacy in mitigating AD-related symptoms. CONCLUSIONS The findings underscore the significant potential of PBM as a safe and effective alternative treatment for Alzheimer's disease, emphasizing the necessity for further research and clinical trials to establish its therapeutic efficacy conclusively.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
| | - Deeba Dinarvand
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (M.W.); (D.D.); (C.T.Y.C.)
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
7
|
Dey A, Ghosh S, Rajendran RL, Bhuniya T, Das P, Bhattacharjee B, Das S, Mahajan AA, Samant A, Krishnan A, Ahn BC, Gangadaran P. Alzheimer's Disease Pathology and Assistive Nanotheranostic Approaches for Its Therapeutic Interventions. Int J Mol Sci 2024; 25:9690. [PMID: 39273645 PMCID: PMC11395116 DOI: 10.3390/ijms25179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.
Collapse
Affiliation(s)
- Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Tiyasa Bhuniya
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Bidyabati Bhattacharjee
- Department of Life Sciences, Jain (Deemed-to-be) University, Bangalore 560078, Karnataka, India
| | - Sagnik Das
- Department of Microbiology, St Xavier's College (Autonomous), Kolkata 700016, West Bengal, India
| | - Atharva Anand Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai 410210, Maharashtra, India
| | - Anushka Samant
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Orissa, India
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
9
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
10
|
Huang ETC, Yang JS, Liao KYK, Tseng WCW, Lee CK, Gill M, Compas C, See S, Tsai FJ. Predicting blood-brain barrier permeability of molecules with a large language model and machine learning. Sci Rep 2024; 14:15844. [PMID: 38982309 PMCID: PMC11233737 DOI: 10.1038/s41598-024-66897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Predicting the blood-brain barrier (BBB) permeability of small-molecule compounds using a novel artificial intelligence platform is necessary for drug discovery. Machine learning and a large language model on artificial intelligence (AI) tools improve the accuracy and shorten the time for new drug development. The primary goal of this research is to develop artificial intelligence (AI) computing models and novel deep learning architectures capable of predicting whether molecules can permeate the human blood-brain barrier (BBB). The in silico (computational) and in vitro (experimental) results were validated by the Natural Products Research Laboratories (NPRL) at China Medical University Hospital (CMUH). The transformer-based MegaMolBART was used as the simplified molecular input line entry system (SMILES) encoder with an XGBoost classifier as an in silico method to check if a molecule could cross through the BBB. We used Morgan or Circular fingerprints to apply the Morgan algorithm to a set of atomic invariants as a baseline encoder also with an XGBoost classifier to compare the results. BBB permeability was assessed in vitro using three-dimensional (3D) human BBB spheroids (human brain microvascular endothelial cells, brain vascular pericytes, and astrocytes). Using multiple BBB databases, the results of the final in silico transformer and XGBoost model achieved an area under the receiver operating characteristic curve of 0.88 on the held-out test dataset. Temozolomide (TMZ) and 21 randomly selected BBB permeable compounds (Pred scores = 1, indicating BBB-permeable) from the NPRL penetrated human BBB spheroid cells. No evidence suggests that ferulic acid or five BBB-impermeable compounds (Pred scores < 1.29423E-05, which designate compounds that pass through the human BBB) can pass through the spheroid cells of the BBB. Our validation of in vitro experiments indicated that the in silico prediction of small-molecule permeation in the BBB model is accurate. Transformer-based models like MegaMolBART, leveraging the SMILES representations of molecules, show great promise for applications in new drug discovery. These models have the potential to accelerate the development of novel targeted treatments for disorders of the central nervous system.
Collapse
Affiliation(s)
- Eddie T C Huang
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ken Y K Liao
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Warren C W Tseng
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - C K Lee
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Michelle Gill
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Colin Compas
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Simon See
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, China Medical University Children's Hospital, No. 2, Yude Road, Taichung, 404332, Taiwan.
- China Medical University Children's Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
12
|
Dewey CW, Rishniw M, Brunke MW, Gerardi J, Sakovitch K. Transcranial photobiomodulation therapy improves cognitive test scores in dogs with presumptive canine cognitive dysfunction: A case series of five dogs. Open Vet J 2024; 14:1167-1171. [PMID: 38938435 PMCID: PMC11199766 DOI: 10.5455/ovj.2024.v14.i5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 06/29/2024] Open
Abstract
Background Canine cognitive dysfunction (CCD) is considered the canine version of human Alzheimer's disease (AD). As with AD, CCD is a multifactorial and progressive neurodegenerative disorder for which effective treatment options are continuously being sought. Transcranial photobiomodulation (tPBMT) or transcranial laser therapy has shown promise as a treatment for cognitive impairment in rodent AD investigations and several human AD clinical trials. Aim The purpose of this prospective case series was to evaluate the effect of tPBMT on cognitive scores when applied to senior dogs with CCD over a 60-day period. Methods Five senior (>9-year-old) dogs with moderate (16-33) to severe (>33) cognitive scores were enrolled. Owners were instructed on the use of a Class IM laser device and administered a specific dose of laser energy transcranially to both sides of the patient's head, three times per week for one month and two times per week for a second month. No additional therapeutic measures aimed at enhancing cognitive ability were permitted during the 60-day evaluation time. Baseline cognitive scores were compared with scores obtained at 30- and 60-days post-treatment. Results Cognitive scores showed improvement in 4/5 dogs at 30 days (27.6% reduction) and all dogs at 60 days (43.4% reduction). There were no adverse effects attributable to tPBMT. Conclusion Results of our small case series suggest that tPBMT may improve cognitive scores in dogs with moderate to severe CCD by 30 days of application and the improvement is sustained at 60 days. Further studies are needed to ascertain optimal tPBMT protocols for CCD.
Collapse
Affiliation(s)
- Curtis Wells Dewey
- Elemental Pet Vets, PLLC, Freeville, New York, USA
- Department of Veterinary Clinical Sciences, Long Island University College of Veterinary Medicine, New York, USA
| | - Mark Rishniw
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matthew Warren Brunke
- Elemental Pet Vets, PLLC, Freeville, New York, USA
- Veterinary Referral Associates, Gaithersburg, Maryland, USA
| | - Joyce Gerardi
- Synergy Integrative Veterinary Clinic, New Bern, North Carolina, USA
| | | |
Collapse
|
13
|
Mughal ZUN, Ahmed B, Amin F, Sadiq A, Rangwala BS. Lecanemab: A Hopeful Alzheimer's Disease Treatment. Ann Neurosci 2024; 31:83-85. [PMID: 38694720 PMCID: PMC11060132 DOI: 10.1177/09727531231189925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Affiliation(s)
- Zaib Un Nisa Mughal
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Bisma Ahmed
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Fatima Amin
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Aiman Sadiq
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | | |
Collapse
|
14
|
Ding L, Gu Z, Chen H, Wang P, Song Y, Zhang X, Li M, Chen J, Han H, Cheng J, Tong Z. Phototherapy for age-related brain diseases: Challenges, successes and future. Ageing Res Rev 2024; 94:102183. [PMID: 38218465 DOI: 10.1016/j.arr.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.
Collapse
Affiliation(s)
- Ling Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ziqi Gu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Panpan Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yilan Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xincheng Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mengyu Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jinhan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
15
|
Carroll JD. Photobiomodulation Literature Watch March 2023. Photobiomodul Photomed Laser Surg 2023; 41:445-448. [PMID: 37579134 DOI: 10.1089/photob.2023.29026.lit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
|
16
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
17
|
Ailioaie LM, Ailioaie C, Litscher G. Infection, Dysbiosis and Inflammation Interplay in the COVID Era in Children. Int J Mol Sci 2023; 24:10874. [PMID: 37446047 DOI: 10.3390/ijms241310874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
For over three years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children and adolescents has generated repercussions, especially a few weeks after infection, for symptomatic patients who tested positive, for asymptomatic ones, or even just the contacts of an infected person, and evolved from severe forms such as multisystem inflammatory syndrome in children (MIS-C) to multifarious clinical manifestations in long COVID (LC). Referred to under the umbrella term LC, the onset of persistent and highly heterogeneous symptoms such as fatigue, post-exertion malaise, cognitive dysfunction, and others have a major impact on the child's daily quality of life for months. The first aim of this review was to highlight the circumstances of the pathophysiological changes produced by COVID-19 in children and to better understand the hyperinflammation in COVID-19 and how MIS-C, as a life-threatening condition, could have been avoided in some patients. Another goal was to better identify the interplay between infection, dysbiosis, and inflammation at a molecular and cellular level, to better guide scientists, physicians, and pediatricians to advance new lines of medical action to avoid the post-acute sequelae of SARS-CoV-2 infection. The third objective was to identify symptoms and their connection to molecular pathways to recognize LC more easily. The fourth purpose was to connect the triggering factors of LC with related sequelae following acute SARS-CoV-2 injuries to systems and organs, the persistence of the virus, and some of its components in hidden reservoirs, including the gut and the central nervous system. The reactivation of other latent infectious agents in the host's immune environments, the interaction of this virus with the microbiome, immune hyperactivation, and autoimmunity generated by molecular mimicry between viral agents and host proteins, could initiate a targeted and individualized management. New high-tech solutions, molecules, probiotics, and others should be discovered to innovatively solve the interplay between RNA persistent viruses, microbiota, and our immune system.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, 8053 Graz, Austria
| |
Collapse
|