1
|
Gadhave D, Quadros M, Ravula S, Ugale AR, Alkyam M, Perron JC, Gupta V. Quality by design enabled development & in-vitro assessment of a Nanoemulgel formulation for Nose-to-Brain delivery of Nintedanib for glioblastoma multiforme treatment. Int J Pharm 2025:125632. [PMID: 40268208 DOI: 10.1016/j.ijpharm.2025.125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that spreads uncontrollably and invades the surrounding brain parenchyma. GBM treatment remains challenging due to the rigid blood-brain barrier, limiting therapeutic entry into the brain. Therefore, the current study focused on formulating a Nintedanib (Nint) loaded in-situ Nanoemulgel (Nint-Nanoemulgel) and exploring its permeation and therapeutic potential under in-vitro models to address these limitations. Nint-Nanoemulgel was optimized through the QbD-enabled Box-Behnken design. Optimized Nint-Nanoemulgel revealed significant globule size (27.4 ± 0.8 nm), PDI (0.17 ± 0.01), % encapsulation efficiency (93.5 ± 3.5 %), zeta potential (-4.7 ± 0.6 mV), %T (98.2 ± 0.2 %), pH (6.0 ± 0.2), and viscosity (2.59 ± 0.24 cP) at 25 °C. A cumulativein-vitro release study revealed 87.4 ± 1.9 % Nint release through Nanoemulgel after 12 h while 90.1 ± 2.1 % release after 24 h.The cytotoxicity potential of developed Nint-Nanoemulgel was screened in GBM cell lines, demonstrating a > 2-fold reduction in IC50 than plain Nint. However, after treatment with 100 µM of Nint-Nanoemulgel, % growth inhibition was found to be 91.0 ± 1.0 %, 92.1 ± 1.3 %, and 82.7 ± 1.0 % in LN229, U87, and U138 cell lines, respectively. Further,in-vitro cellular uptake exhibited significant coumarin cellular internalization through nanoformulations against coumarin solution. Moreover, clonogenic and scratch assay studies demonstrated the ability of Nint-NE to inhibit cell proliferation and colony formation. However, the outcomes of the live-dead assay demonstrated more cell death in Nint-nanoformulation-treated spheroids than in Nint-treated spheroids. Nint-Nanoemulgel improved intracellular permeation and demonstrated a 2-fold increase in Nint transport across the RPMI-2650 epithelial monolayer. Finally, favorable outcomes of intranasal Nint-Nanoemulgel could provide a novel avenue for the safe and effective delivery of Nint in GBM patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mural Quadros
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Sravani Ravula
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Akanksha R Ugale
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mayssam Alkyam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Jeanette C Perron
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
2
|
Megala G, Kavitha M. Folate from probiotic bacteria and its therapeutic applications. Arch Microbiol 2025; 207:124. [PMID: 40249393 DOI: 10.1007/s00203-025-04327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Folate, an essential water soluble vitamin B9 that cannot be synthesized naturally by the bodily function. Dietary sources or probiotic-folates are the two biological modes for acquiring the target vitamin which aids DNA synthesis and repair. Probiotics are known for their divergent health benefits and have garnered significant interest. Particularly in microbial strains that produce folate offers a promising way to enhance the level of folate. Notably, folate-producing probiotic strain includes Lactiplantibacillus, Lactococcus, Bifidobacterium, and Streptococcus. As an emerging source of health benefits, folate producing probiotics helps in improving the gut microbiota for overall well-being of human body. On the other side, chemically synthesized folic acid were not highly advantageous as they lacks absorption, conversion and excretion. Hence, usage of microbial-folate are safer as it can easily undergo absorption and reduces severe side effects. The present review mainly focus on folate one-carbon metabolism, its significance in human health, folate deficiency and malabsorption, adverse effects and folate synthesis from probiotic bacterial strains, and also toxicological impacts. In particular, the beneficiary role of these probiotic strains were found to be associated with therapeutic applications in several diseases such as autoimmune disorder, metabolic disorders, and cardiovascular diseases (CVDs), wound healing, drug delivery and cancer.
Collapse
Affiliation(s)
- G Megala
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Gokalp S, Xavierselvan M, Khan MF, Shethia R, Khani S, Riddell RH, Krasnoslobodtseva AV, Mallidi S, Foster M. Liquid metal nanoparticles for enhanced delivery of benzoporphyrin derivative in photodynamic cancer therapy. Photochem Photobiol 2025. [PMID: 40235054 DOI: 10.1111/php.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Photodynamic therapy (PDT) is a targeted cancer treatment offering precise tumor ablation with minimal systemic toxicity. However, its clinical application is constrained by poor solubility, rapid clearance, and inadequate tumor accumulation of photosensitizers (PS). This study presents an innovative liquid metal nanoparticle (LMNP) platform, composed of gallium-indium eutectic alloy (EGaIn), engineered to address these drug delivery challenges in PDT. Using a one-step sonication process, EGaIn nanoparticles are synthesized and functionalized with folic acid (FA) for tumor-specific targeting, beta cyclodextrin (β-CD) for enhanced drug encapsulation, and benzoporphyrin derivative (BPD) as a PS. The inclusion of β-CD significantly improves the BPD loading capacity, achieving a three-fold enhancement (52% vs. 18%) while ensuring nanoparticle stability and sustained drug release. Covalent binding of FA and β-CD to the gallium oxide surface enables effective targeting and biocompatibility. In vitro analyses demonstrate potent PDT efficacy, even with reduced cellular uptake, underscoring the platform's ability to overcome intracellular delivery barriers. This LMNP-based nanoplatform addresses critical PDT limitations, such as suboptimal drug delivery and systemic toxicity, leveraging the unique chemical and physical properties of EGaIn nanoparticles. Its multifunctional design integrates targeted delivery, controlled release, and precise therapeutic activation, representing a promising advancement in the development of effective, personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Sumeyra Gokalp
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Mohammad Forhad Khan
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | - Ronak Shethia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sima Khani
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | - Ryan H Riddell
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Michelle Foster
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Patil A, Singh G, Dighe RD, Dev D, Patel BA, Rudrangi S, Tiwari G. Preparation, optimization, and evaluation of ligand-tethered atovaquone-proguanil-loaded nanoparticles for malaria treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:711-742. [PMID: 39522102 DOI: 10.1080/09205063.2024.2422704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This work focused on improving antimalarial therapy through the development and characterization of Atovaquone-Proguanil-loaded nanoparticles employing a 32 factorial design. The nanoparticles were prepared from combinations of Poly(lactic-co-glycolic acid) (PLGA) and Eudragit L100 polymers and different concentrations of PVA (polyvinyl alcohol). Based on the results obtained the formulations were characterized for the particle size, zeta potential, encapsulation efficiency, and percent drug release. Among the nine formulations, F5 proved to be the most favorable in the biophysical parameters with a particle size of 176.3 nm, a zeta potential of -33.5 mV, and an encapsulation efficiency of 86% was found in the present investigation. Experimental dissolution profile analysis indicated that F5 had a slow and controlled-release profile where approximately 92.5%. Besides, cytotoxicity studies employing MTT, LDH (lactate dehydrogenase), and Trypan blue reduction test also supported the biocompatibility of nanoparticles and F5 had the highest cell viability (96%) with the least LDH release of 4%. In stability studies conducted for six months, F5 was found to remain stable regarding physicochemical characteristics and drug release profile at different temperature conditions such as room temperature, 4 °C, and 45 °C. The use of folic acid-functionalized nanoparticles is more effective, according to parasitemia, survival rate, and weight loss in mice treated with the nanoparticles. This is because functionalized nanoparticles could be used to enhance anti-malarial therapies.
Collapse
Affiliation(s)
- Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Gurinderdeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Punjab, India
| | - Rajendra Dnyandeo Dighe
- Department of Pharmaceutical Chemistry, K.B.H.S.S Trust's, Institute of Pharmacy, Malegaon, Nashik, Maharashtra, India
| | - Dhruv Dev
- Department of Pharmacy, Shivalik College of Pharmacy Nangal, Rupnagar, Punjab, India
| | - Bhaveshkumar A Patel
- Group Leader- Product Development, Frontage laboratories Inc., Exton, Pennsylvania, USA
| | - Samatha Rudrangi
- Department of Pharmacy Practice, Lifecare Pharmacy of Austin, Bexar, Texas, USA
| | - Gaurav Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, India
| |
Collapse
|
5
|
Heydarian R, Divsalar A, Kouchesfehani HM, Rasouli M. Folic acid-targeted β-lactoglobulin nanocarriers for enhanced delivery of 5-fluorouracil and sodium butyrate in colorectal cancer treatment. Int J Pharm 2025; 671:125262. [PMID: 39870256 DOI: 10.1016/j.ijpharm.2025.125262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells. The βlg-5-FU-NaB-FA nanoplatforms exhibited a well-defined size of 208 nm with a narrow size distribution (PDI ≈ 0.5). Zeta potential measurements showed a value of -11.4 mV, indicating stability and suitability for drug delivery. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) confirmed the nanocarrier's spherical morphology and efficient distribution. Drug release profiles demonstrated that the NPs released more drugs at neutral to alkaline pH levels, attributed to pectin's ionization properties. The efficacy of the prepared βlg-5-FU-NaB-FA nanoplatforms was investigated on HCT116 and Caco2 CRC cells, along with the normal cell line CRL-1831. The βlg-5-FU-NaB-FA nanoplatforms exhibited remarkable cytotoxicity against both HCT116 and Caco2 CRC cells compared to free drugs, highlighting the efficacy of targeted delivery in folate receptor-positive cells. These NPs induce cell apoptosis and cell cycle arrest more effectively than free drugs, demonstrating their potential for targeted cancer therapy. Furthermore, a decrease in the expression of crucial genes involved in the Wnt signaling pathway was observed, which offers a valuable understanding of their underlying mechanism. Collectively, our results suggest that the FA-targeted βlg nanocarriers represent a promising platform for the efficient and targeted delivery of 5-FU and NaB in folate receptor-positive CRC. This novel nanocarrier holds the potential to enhance therapeutic outcomes while minimizing side effects, providing a new avenue for the treatment of CRC.
Collapse
Affiliation(s)
- Ronak Heydarian
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | | | - Milad Rasouli
- Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Patrojanasophon P, Singpanna K, Rojanarata T, Opanasopit P, Ngawhirunpat T, Pengnam S, Pornpitchanarong C. Folate receptor-targeted thiol-maleimide clicked chitosan/carboxymethyl cellulose nanoparticles for cisplatin delivery in oral carcinoma. Int J Biol Macromol 2025; 290:138976. [PMID: 39708877 DOI: 10.1016/j.ijbiomac.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to develop cisplatin (CDDP)-loaded folic acid (FA)-decorated nanoparticles (NPs) as targeted drug carrier towards overexpressed folate receptors on the oral carcinoma cell line (KB cells). The FA-conjugated thiolated succinyl chitosan (FA-SH-SCS) and maleimide-grafted-carboxymethyl cellulose (CMC-MAL) were synthesized and acquired in the preparation of NPs via thiol-maleimide click reaction. The physicochemical characteristics, drug loading, and drug release of the FA-decorated NPs (FA-NPs) were examined. Also, the in vitro biocompatibility, cellular uptake, and cell death mechanism were investigated. Relatively spherical NPs with negative charge were obtained with a size of approximately 200 nm. The formation of FA-NPs through click reaction was confirmed by the pH change and Ellman's assay. The release of CDDP from the FA-NPs was influenced by the acidic tumor environment. The FA-NPs were non-toxic to the normal cells. Furthermore, FA-NPs improved the cellular uptake of CDDP in oral carcinoma cells through specific recognition of folate receptors by FA-NPs. The delivery of CDDP by FA-NPs to the KB cell induced the apoptotic cell death pathway. Therefore, FA-NPs presented the potential to be effective nanocarriers for CDDP delivery in the treatment of oral cancer via active targeting approach.
Collapse
Affiliation(s)
- Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
7
|
Alaqabani H, Hammad A, Abosnwber Y, Perrie Y. Novel microfluidic development of pH-responsive hybrid liposomes: In vitro and in vivo assessment for enhanced wound Healing. Int J Pharm 2024; 667:124884. [PMID: 39471888 DOI: 10.1016/j.ijpharm.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Wound healing is a complex biological process crucial for tissue repair, especially in chronic wounds where healing is impaired. Liposomes have emerged as promising vehicles for delivering therapeutics to facilitate wound repair. Liposomes have been explored as effective carriers for therapeutic agents. However, traditional methods of liposome preparation face significant challenges, particularly in achieving consistent stability and precise control over drug encapsulation and release. This study addresses these challenges by pioneering the development of Hybrid Liposomes (HLPs) using microfluidic technology, which provides more controlled characteristics through precisely managed formulation parameters. Notably, the formation of Polydopamine (PDA) polymer within HLPs facilitates pH-responsive drug release, making them well-suited for acidic wound environments. Furthermore, surface modification with Folic Acid (FA) enhances cellular interaction with the HLPs. In vitro and in vivo studies demonstrate the efficacy of HLPs loaded with Hyaluronic Acid (HA) or Phenytoin (PHT) in promoting wound healing. Microfluidics optimizes the stability of HLPs over 90 days, underscoring their potential as a potent, antibiotic-free drug delivery system. In conclusion, this research advances the understanding of microfluidic optimization for HLPs, offering cutting-edge drug delivery systems. The transformative potential of targeted HLPs through microfluidics holds promise for revolutionizing wound healing and inspires optimism for effective therapeutic interventions.
Collapse
Affiliation(s)
- Hakam Alaqabani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK; Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Alaa Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Yara Abosnwber
- Faculty of Health School of Biomedical Sciences, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| |
Collapse
|
8
|
Ranjbar M, Hashemi Rad P, Rajaei Litkohi H, Solaimani M. Epirubicin/folic acid and meropenem loaded on graphene oxide-gelatin can be used as a novel candidate for anti-cancer and antibacterial drug development. Int J Pharm 2024; 666:124846. [PMID: 39424083 DOI: 10.1016/j.ijpharm.2024.124846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Resistance to meropenem and epirubicin poses a significant global threat, particularly in developing nations with constrained health resources. To overcome this problem, nanotechnology provides several promising solutions, including drug delivery systems that can improve the effectiveness of drugs. The objectives of this work is to characterize the anticancer mechanism of Graphene Oxide (GO) coated with Gelatin (Gel) and conjugated with the anticancer drug Epirubicin (EPi), along with functionalization with Folic Acid in SK-OV3 cancer cell lines for the first time. Furthermore, meropenem was loaded onto Graphene Oxide-Gelatin (GO-Gel) to improve its efficacy. The nanocomposites were characterized using FT-IR, XRD, FESEM and EDX. The viability of the ovarian cancer cell lines (SKOV3) and normal ovarian cell lines (HUVEC) after treatment with GO-Gel, Graphene Oxide-Gelatin-Folic acid (GO-Gel-FA), free Epi and Graphene Oxide-Gelatin-Folic acid/ Epirubicin (GO-Gel-FA/Epi) nanocomposite, was studied by the MTT assay. Expression of the TNFα, Bax, Bcl-2, and NF-κB in the GO-Gel-FA/Epi nanocomposite treated cells, were investigated by qRT-PCR. Disc diffusion assay was utilized to assess the antimicrobial activity of free mer and GO-Gel-Mer nanocomposite against two gram-positive bacteria and two gram-negative bacteria. Results demonstrated that The GO-Gel-FA/Epi nanocomposite showed greater cytotoxic effects on SKOV3cells than normal HUVEC cells. The expression of the Bax was upregulated, while the expression of the Bcl-2, TNFα and NF-κB was reduced in GO-Gel-FA/Epi nanocomposite-treated cells. The Graphene Oxide-Gelatin-Meropenem (GO-Gel-Mer) nanocomposite showed a controlled release within 45 h. GO-Gel-Mer nanocomposite showed much more activity against bacteria in comparison to free Mer. GO-Gel-FA/Epi nanocomposite possesses strong anti-proliferative properties against SK-OV3 cancer cells and indicated promising inhibitory candidate for anticancer therapy. The novel synthesized GO-Gel-Mer nanocomposite can be used as an effective antimicrobial nanomaterial against a range of microbial pathogens, including gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- Mojtaba Ranjbar
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran.
| | - Parisa Hashemi Rad
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| | - Hajar Rajaei Litkohi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| | - Maryam Solaimani
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| |
Collapse
|
9
|
Zhou L, Du Y, Shang Y, Xiang D, Xia X. A Novel Triptolide Nano-Liposome with Mitochondrial Targeting for Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:12975-12998. [PMID: 39654802 PMCID: PMC11626209 DOI: 10.2147/ijn.s498099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Background Modern pharmacological studies have demonstrated that although triptolide (TP) is effective against hepatocellular carcinoma, it has poor water solubility and more toxic side effects. In this study, we used triptolide (TP), a bioactive constituent in Tripterygium wilfordii Hook F, as a model drug to develop a novel nano-liposome drug delivery system for the treatment of liver tumours. Methods We constructed a functionally-modified triptolide liposome (FA+TPP-TP-Lips) using the film-dispersion method and investigated its physicochemical properties, mitochondrial targeting of hepatic tumour cells, in vitro and in vivo anti-hepatic tumour activity and its mechanism. Results The prepared FA+TPP-TP-Lips had a particle size of 99.28 ± 5.7 nm, a PDI of 0.20 ± 0.02, a zeta potential of 1.2 ± 0.08 mV, and an encapsulation rate of 74.37% ± 1.07%.FA+TPP-TP-Lips facilitates the cellular uptake of drug delivery systems and improves their targeted delivery to mitochondria. The results of cell efficacy showed that FA+TPP-TP-Lips significantly inhibited the growth of liver cancer cells, decreased mitochondrial membrane potential, and increased intracellular ROS, thus enhancing the highest apoptosis rate of liver cancer cells. The targeted liposomes (FA-TP-Lips, TPP-TP-Lips, and FA+TPP-TP-Lips) had some degree of inhibitory migration effect on Huh-7 cells relative to the unmodified TP-Lips. Studies on tumor-bearing mice demonstrated that FA+ TPP-TP-Lips effectively accumulated in tumor tissues and significantly inhibited the growth of subcutaneous tumors, achieving a tumor inhibition rate of 79.37%. FA+ TPP-TP-Lips demonstrated an enhanced anti-liver tumor effect and significantly mitigated the hepatotoxicity and systemic toxicity associated with TP. Conclusion In summary, the results of this study can provide a feasible solution for improving the mitochondrial targeting of nano-liposomes, and lay a foundation for further developing a novel nano targeting preparation of triptolide for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yang Du
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yating Shang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, 410208, People’s Republic of China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
10
|
Wang C, Zhang Y, Kong W, Rong X, Zhong Z, Jiang L, Chen S, Li C, Zhang F, Jiang J. Delivery of miRNAs Using Nanoparticles for the Treatment of Osteosarcoma. Int J Nanomedicine 2024; 19:8641-8660. [PMID: 39188861 PMCID: PMC11346496 DOI: 10.2147/ijn.s471900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.
Collapse
Affiliation(s)
- Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yihong Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Weihui Kong
- Department of Stomatology, the First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Ziming Zhong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lei Jiang
- Department of Geriatric Medicine, Changchun Central Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Shuhan Chen
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Chuang Li
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
11
|
Chaudhuri A, Kumar DN, Srivastava SK, Kumar D, Patil UK, Parmar AS, Singh S, Agrawal AK. Combinatorial Delivery of Docetaxel- and Erlotinib-Loaded Functionalized Nanostructured Lipid Carriers for the Treatment of Triple-Negative Breast Cancer Using Quality-by-Design Approach. Pharmaceutics 2024; 16:926. [PMID: 39065626 PMCID: PMC11279545 DOI: 10.3390/pharmaceutics16070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored the combined administration of docetaxel (DOC) and erlotinib (ERL) using nanostructured lipid carriers (NLCs), with folic acid (FA) conjugation to enhance their synergistic anticancer efficacy against triple-negative breast cancer. NLCs were developed through hot melt homogenization-ultrasound dispersion, and optimized by a quality-by-design (QbD) approach using Plackett-Burman design and Box-Behnken design. Plots were generated based on maximum desirability. Spherical, nanosized dispersions (<200 nm) with zeta potential ranging from -16.4 to -14.15 mV were observed. These nanoformulations demonstrated ~95% entrapment efficiency with around 5% drug loading. Stability tests revealed that the NLCs remained stable for 6 months under storage conditions at 4 °C. In vitro release studies indicated sustained release over 24 h, following Higuchi and Korsmeyer-Peppas models for NLCs and FA NLCs, respectively. Additionally, an in vitro pH-stat lipolysis model exhibited a nearly fivefold increase in bioaccessibility compared to drug-loaded suspensions. The DOC-ERL-loaded formulations exhibited dose- and time-dependent cytotoxicity, revealing synergism at a 1:3 molar ratio in MDA-MB-231 and 4T1 cells, with combination indices of 0.35 and 0.37, respectively. Co-treatment with DOC-ERL-loaded FA NLCs demonstrated synergistic anticancer effects in various in vitro assays.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| | | | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar 470003, India;
| | | | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
- Dr. Shakuntala Misra National Rehabilitation University, Lucknow 226017, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| |
Collapse
|
12
|
Li Z, Xie HY, Nie W. Nano-Engineering Strategies for Tumor-Specific Therapy. ChemMedChem 2024; 19:e202300647. [PMID: 38356248 DOI: 10.1002/cmdc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Nanodelivery systems (NDSs) provide promising prospects for decreasing drug doses, reducing side effects, and improving therapeutic effects. However, the bioapplications of NDSs are still compromised by their fast clearance, indiscriminate biodistribution, and limited tumor accumulation. Hence, engineering modification of NDSs aiming at promoting tumor-specific therapy and avoiding systemic toxicity is usually needed. An NDS integrating various functionalities, including flexible camouflage, specific biorecognition, and sensitive stimuli-responsiveness, into one sequence would be "smart" and highly effective. Herein, we systematically summarize the related principles, methods, and progress. At the end of the review, we predict the obstacles to precise nanoengineering and prospects for the future application of NDSs.
Collapse
Affiliation(s)
- Zijin Li
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
13
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
14
|
Peng W, Qian Y, Qi X. Efficacy of a novel glioma therapy based on ferroptosis induced by layered double hydroxide loaded with simvastatin. ENVIRONMENTAL RESEARCH 2023; 238:117112. [PMID: 37717807 DOI: 10.1016/j.envres.2023.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Glioma is the most common primary malignant tumor of the nervous system that starts in the glial cells. Its high invasiveness and recurrence pose major challenges to its effective treatment. Ferroptosis is a new type of programmed cell death characterized by intracellular iron overload and accumulation of lipid peroxides. Existing studies have demonstrated the efficacy of targeted ferroptosis therapy in the treatment of glioma. In this study, folic acid (FA)-modified layered double hydroxide loaded with simvastatin (SIM), a ferroptosis drug, was used to prepare a novel ferroptosis nanodrug (FA-LDH@SIM). The prepared nanodrug improved the therapeutic effect of SIM on glioma. Compared with free SIM, FA-LDH@SIM showed greater cytotoxicity, significantly inhibited glioma cell proliferation, and significantly inhibited glioma invasion and migration ability. Furthermore, SIM could induce changes in certain ferroptosis indicators, including increased intracellular LPO, ROS and MDA level, decreased GSH production, increased divalent iron level, and changes in mitochondrial morphology. Further experiments revealed that SIM induced ferroptosis in tumor cells by down-regulating HMGCR expression and inhibiting the mevalonate pathway to down-regulate GPX4 expression. In addition, the FA-LDH@SIM group significantly inhibited tumor growth after treatment in the animal glioma model. These results indicate that the FA-LDH@SIM nanodrug delivery system exhibits excellent anti-tumor effects both in vitro and in vivo, and is an effective method for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568, Zhongxing Road, Shaoxing, 312000, Zhejiang, China.
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568, Zhongxing Road, Shaoxing 312000, Zhejiang, China.
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Shangcheng District, Hangzhou 310000, Zhejiang, China; Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568, Zhongxing Road, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|