1
|
Wei W, Shi Y, Zhang K, Li B. The Preparation of Robust Gully-like Surface of Stainless Steel Fiber-Bonded TFPA-TTA-COF with Nano Pores for Solid-Phase Microextraction of Phenolic Compounds in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:354. [PMID: 40072157 PMCID: PMC11902147 DOI: 10.3390/nano15050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
In this paper, a novel robust TFPA-TTA-COF coating with nano pores was grafted to the gully-like surface of stainless steel fibers (GS-SSF). The GS-SSF were prepared using a two-step electrochemical etching method, and the covalent organic framework (COF) TFPA-TTA-COF coating was chemically bonded to the gully-like surface via in situ growth. The prepared metal fibers were applied as the headspace solid-phase microextraction (HS-SPME) fibers and combined with gas chromatography (GC) to develop a detection method for phenolic compounds (PCs) in water. The developed method gave the limits of detection (S/N = 3) from 0.07 µg·L-1 to 0.52 µg·L-1 with enrichment factors from 243 to 2405. The relative standard deviations for inter-day study (n = 5) and fiber-to-fiber were from 3.94% to 8.89% and 2.17% to 8.05%, respectively. The prepared fiber could stand at least 180 cycles without remarkable loss of extraction efficiency. The developed method was successfully employed for the determination of trace PCs in environmental water with recoveries from 84.76% to 124.84%.
Collapse
Affiliation(s)
- Wanqian Wei
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Yu Shi
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Keqing Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Baohui Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| |
Collapse
|
2
|
Sajeevan A, Sukumaran RA, Panicker LR, Kotagiri YG. Trends in ready-to-use portable electrochemical sensing devices for healthcare diagnosis. Mikrochim Acta 2025; 192:80. [PMID: 39808331 DOI: 10.1007/s00604-024-06916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations. Enhanced levels of healthcare management can be attained by the implementation of rapid diagnostic procedures and cognitive data analysis. Therefore, there is a constant need for smart therapeutics, analytical tools, and diagnostic systems to improve health and well-being. The past decade witnessed enormous growth in the sensing detection systems integrated into smartphones with printed electrodes and wearable patches for the screening of various healthcare diagnostics biomarkers and therapeutic drugs. This review focuses on the expansion of point-of-care technologies and their incorporation into a broader array of portable devices, a critical aspect in the context of decentralized societies and their healthcare systems. Discussions are broadly focused on the different sensing platforms such as solid electrodes, screen-printed electrodes, and paper-based sensing strategies for the detection of various biomarkers and therapeutic drugs. We also discuss the next-generation healthcare wearable sensing device importance and future research possibilities. Finally, the portable electrochemical sensing devices and their future perspective developments towards healthcare diagnosis are critically summarized.
Collapse
Affiliation(s)
- Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Reshmi A Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
| |
Collapse
|
3
|
Pires B, Catarro G, Soares S, Gonçalves J, Rosado T, Barroso M, Araujo ARTS, Gallardo E. Volumetric Absorptive Microsampling in Toxicology. TOXICS 2024; 13:25. [PMID: 39853024 PMCID: PMC11768451 DOI: 10.3390/toxics13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Volumetric absorptive microsampling (VAMS) is an emerging technique in clinical and forensic toxicology. It is recognized as a promising alternative to traditional sampling methods, offering an accurate and minimally invasive means of collecting small volumes of biological samples, such as blood, urine, and saliva. Unlike conventional methods, VAMS provides advantages in terms of sample stability, storage, and transportation, as it enables samples to be collected outside laboratory environments without requiring refrigeration. This review explores several VAMS methodologies, with a particular focus on its application for the quantification of drugs and other substances in clinical and forensic toxicology. It compares VAMS to other microsampling techniques, such as dried blood spots (DBSs), highlighting VAMS's superiority in addressing issues related to sample volume consistency and environmental impact. Despite its advantages, VAMS also presents certain limitations, including higher costs and difficulties in detecting underfilled samples. Overall, VAMS stands out as a microsampling technique with the potential to enhance patient compliance and operational efficiency, positioning itself as a viable tool for toxicological analysis in both clinical and forensic contexts.
Collapse
Affiliation(s)
- Bruno Pires
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gonçalo Catarro
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Joana Gonçalves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- CERNAS-IPV Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Grupo de Investigação Sobre Problemas Relacionados Com Toxicofilias, Centro Académico Clínico das Beiras (CACB), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Mário Barroso
- AlphaBiolabs, 14 Webster Court, Carina Park, Warrington WA5 8WD, UK;
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - André R. T. S. Araujo
- Grupo de Investigação Sobre Problemas Relacionados Com Toxicofilias, Centro Académico Clínico das Beiras (CACB), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- BRIDGES—Investigação Biotecnológica para a Inovação e Design de Produtos de Saúde, Instituto Politécnico da Guarda, Avenida Dr. Francisco Sá Carneiro, n.º 50, 6300-559 Guarda, Portugal
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Grupo de Investigação Sobre Problemas Relacionados Com Toxicofilias, Centro Académico Clínico das Beiras (CACB), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Ullah N, Tuzen M, Saleh TA. A comprehensive review of portable syringe systems using micropipette-based extraction techniques for metal analysis. J Chromatogr A 2024; 1736:465423. [PMID: 39413567 DOI: 10.1016/j.chroma.2024.465423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The release of harmful compounds, particularly dangerous metal ions, into the environment has drawn deep concern from the scientific community. Therefore, it has become common in research to evaluate and quantify the harmful concentrations in the presence of these metal ions in several real samples (food, water, and biological samples). To increase sensitivity and lessen the impact of the matrix, sample pretreatment is a helpful strategy to implement before analysis. The limitations of conventional methods have been recently significantly reduced by developing new analytical approaches such as microextraction techniques. The miniaturization of conventional solid-phase extraction (SPE) led to solid-phase microextraction (SPME), drastically reducing both adsorbent use and extraction phase volume. SPME is defined in the present context as a modified extraction technique that employs a portable syringe system attached to micropipette tips. The SPME is considered one of the most appropriate sample preparation tools due to its compatibility with different detection techniques for different metal ions. The current review focuses on SPME based on a portable syringe (attaches to a micropipette tip) system because it has many advantages over conventional solid-phase extraction. It can be designed very simply in a syringe system, a very small quantity of the sorbent has to be kept in the tip, tube, or inside a syringe as a plug and combined with various analytical instruments. Many researchers have designed their own by using homemade tips packed with a sorbent to increase extraction capability and selectivity. According to the current review, there is a lot of potential for increasing the efficacy and efficiency of metal ion extraction from complicated matrices using portable syringe SPME. Studies have shown that when compared to conventional approaches, it performs better in terms of sensitivity, selectivity, and user-friendliness. Furthermore, its application to a wider range of sample types has been enhanced by the flexibility in constructing unique sorbent tips. Conclusively, the developments in portable syringe SPME have addressed several limitations of conventional techniques, positioning it as a robust and versatile tool for environmental monitoring and analysis of hazardous metal ions.
Collapse
Affiliation(s)
- Naeem Ullah
- Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey; Department of Chemistry, University of Turbat, Balochistan 92600, Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
5
|
Rosendo LM, Rosado T, Zandonai T, Rincon K, Peiró AM, Barroso M, Gallardo E. Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy. Int J Mol Sci 2024; 25:5925. [PMID: 38892112 PMCID: PMC11173075 DOI: 10.3390/ijms25115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This review emphasises the importance of opioid monitoring in clinical practice and advocates for a personalised approach based on pharmacogenetics. Beyond effectively managing pain, meticulous oversight is required to address concerns about side effects, specially due to opioid-crisis-related abuse and dependence. Various monitoring techniques, along with pharmacogenetic considerations, are critical for personalising treatment and optimising pain relief while reducing misuse and addiction risks. Future perspectives reveal both opportunities and challenges, with advances in analytical technologies holding promise for increasing monitoring efficiency. The integration of pharmacogenetics has the potential to transform pain management by allowing for a precise prediction of drug responses. Nevertheless, challenges such as prominent pharmacogenetic testing and guideline standardisation persist. Collaborative efforts are critical for transforming scientific advances into tangible improvements in patient care. Standardised protocols and interdisciplinary collaboration are required to ensure consistent and evidence-based opioid monitoring. Future research should look into the long-term effects of opioid therapy, as well as the impact of genetic factors on individual responses, to help guide personalised treatment plans and reduce adverse events. Lastly, embracing innovation and collaboration can improve the standard of care in chronic pain management by striking a balance between pain relief and patient safety.
Collapse
Affiliation(s)
- Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB), Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Thomas Zandonai
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain; (T.Z.); (K.R.); (A.M.P.)
- Addiction Science Lab, Department of Psychology and Cognitive Science, University of Trento, 38060 Trento, Italy
- Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernandez University of Elche, 03550 Alicante, Spain
| | - Karem Rincon
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain; (T.Z.); (K.R.); (A.M.P.)
- Clinical Pharmacology Unit, Department of Health of Alicante, University General Hospital Dr. Balmis, 03010 Alicante, Spain
| | - Ana M. Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain; (T.Z.); (K.R.); (A.M.P.)
- Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernandez University of Elche, 03550 Alicante, Spain
- Clinical Pharmacology Unit, Department of Health of Alicante, University General Hospital Dr. Balmis, 03010 Alicante, Spain
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal;
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB), Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
6
|
Salahaddin Taha S, Salahuddin Ali D. Ion-pair vortex assisted liquid phase micro-extraction coupled with UV-visible spectrophotometry for the determination of mesalazine in pharmaceutical formulations. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:483-492. [PMID: 37923008 DOI: 10.1016/j.pharma.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
This study demonstrates an effective, simple, and selective method for monitoring mesalazine in pharmaceutical formulations using liquid phase micro-extraction (LPME) and spectrophotometry. Combining LPME with spectrophotometry is an efficient method for analysing various compounds in different matrices. This method is based on extracting the ion-pair formed between the blue indophenol produced by the oxidative reaction of mesalazine and syringic acid in an alkaline medium and a quaternary ammonium salt into a micro-volume of organic solvent. The experimental parameters influencing LPME performance, such as the type and concentration of the quaternary ammonium ion salt and the type and volume of the extractant solvent, were optimised for optimal detection. The linear range and the limit of detection for measuring red species in pharmaceutical formulations were determined to be 0.005-0.080 μg/mL-1 and 0.003 μg/mL-1, respectively, with a relative standard deviation of 4-6%. The method had a preconcentration factor of 50 at 520nm, making it highly efficient and reliable for monitoring mesalazine in pharmaceutical formulations.
Collapse
Affiliation(s)
- Suzan Salahaddin Taha
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
| | - Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq; Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
7
|
Wu J, Zheng L, Huang X. Fabrication and evaluation of a molecular-imprinted-polymer functionalized electrode for selective electric field-assisted solid-phase microextraction of phytohormones. Talanta 2024; 270:125572. [PMID: 38157736 DOI: 10.1016/j.talanta.2023.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Specific extraction and separation plays a pivotal role in the accurate quantification of trace phytohormones (PHs). However, due to their high polarity, specific capture of PHs is challenging. In this study, under the assistance of electric field, a molecular-imprinted-polymer functionalized electrode (MIP@ED) was in-situ prepared using 3-indoleacetic acid (IAA) as template and employed as the adsorbent of electric field-assisted solid-phase microextraction (EA-SPME) for specific capture of PHs. Results showed that the implementation of electric field during the preparation of MIP@ED and EA-SPME procedures improved the extraction selectivity, the selective factors towards IAA and its structural analogues increased from 2.09 to 2.45 to 2.88-3.51. Under the optimum conditions, the proposed MIP@ED/EA-SPME was combined with HPLC technique to monitor trace PHs in water and agricultural products. The achieved limits of detection were in the ranges of 0.0053-0.011 μg/L and 0.048-0.12 μg/kg for water and agricultural product, respectively. The established approach was successfully applied to quantify trace PHs in real samples, and the spiked recoveries varied from 84.0 % to 118 % with good repeatability (RSDs blow 10 %). The obtained results provided clear evidence that the developed approach employing the MIP@ED/EA-SPME technique demonstrated high sensitivity, good selectivity, satisfactory reproducibility and environmental friendliness in the quantification of trace PHs in complex samples. In addition, the current study supplied a new strategy to enhance the specific recognition performance of MIP-based SPME.
Collapse
Affiliation(s)
- Jiangyi Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Lingxin Zheng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
8
|
Pour PH, Suzaei FM, Daryanavard SM. Greenness assessment of microextraction techniques in therapeutic drug monitoring. Bioanalysis 2024; 16:249-278. [PMID: 38466891 PMCID: PMC11216521 DOI: 10.4155/bio-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Aim: In this study, we evaluated the greenness and whiteness scores for microextraction techniques used in therapeutic drug monitoring. Additionally, the cons and pros of each evaluated method and their impacts on the provided scores are also discussed. Materials & methods: The Analytical Greenness Sample Preparation metric tool and white analytical chemistry principles are used for related published works (2007-2023). Results & conclusion: This study provided valuable insights for developing methods based on microextraction techniques with a balance in greenness and whiteness areas. Some methods based on a specific technique recorded higher scores, making them suitable candidates as green analytical approaches, and some others achieved high scores both in green and white areas with a satisfactory balance between principles.
Collapse
Affiliation(s)
- Parastoo Hosseini Pour
- Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, 79177, Iran
| | - Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition and Standard of Qeshm (MHCS Company), Qeshm Island, 79511, Iran
| | | |
Collapse
|