1
|
Ullah R, Siraj M, Iqbal J, Abbasi BA. Potential of curcumin and its derivatives, modern insights on the anticancer properties: a comprehensive overview. Z NATURFORSCH C 2025:znc-2024-0220. [PMID: 40108840 DOI: 10.1515/znc-2024-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Globally, cancer is the top cause of mortality, placing a heavy load on the medical system. One of the first known secondary metabolites is curcumin, a bioactive substance. This study aims to emphasize the chemopreventive and chemotherapeutic properties of curcumin and its derivatives, therefore, offering important insights for the possible creation of certain supplemental medications for the treatment of different cancers. Electronic Google databases, including Google scholar, ResearchGate, PubMed/Medline, and ScienceDirect, were searched to gather pertinent data about the chemopreventive and chemotherapeutic effects of curcumin and its derivatives. Various studies have revealed a diverse array of significant biological effects. The majority of investigations pertaining to the potential anticancer effects and associated processes are currently in the experimental preclinical stage and lack sufficient clinical trial data to validate their findings. Clinical research is further needed to clarify the molecular processes and specific targeted action of curcumin and its derivatives, as well as their potential for toxicity and side effects in humans, in order to open up new therapeutic avenues for treating cancer.
Collapse
Affiliation(s)
- Rafi Ullah
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Siraj
- IBGE, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300, Pakistan
| |
Collapse
|
2
|
Gallo E, Smaldone G, Cimmino L, Braile M, Orlandella FM, Luciano N, Accardo A, Salvatore G. Fmoc-FF Nanogel-Mediated Delivery of Doxorubicin and Curcumin in Thyroid Cancer Cells. Pharmaceutics 2025; 17:263. [PMID: 40006633 PMCID: PMC11858838 DOI: 10.3390/pharmaceutics17020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Thyroid cancer (TC) is the most prevalent endocrine malignancy, and is categorized into well-differentiated and aggressive anaplastic types. Novel therapeutic modalities are needed for TC. Nanomedicine is a promising strategy for the development of precision medicine. In this context, we investigated the use of nanogels (NGs) to deliver agents with different physicochemical properties, specifically the hydrophilic agent doxorubicin (DOX) and the hydrophobic compound curcumin (CUR), in TC cell lines. Methods: Nα-9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) peptide-based NGs loaded with DOX and CUR were formulated using the solvent-switch method. DOX-loaded NGs were previously characterized. CUR-loaded NGs were characterized through rheology, scanning electron microscopy (SEM), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and Fourier transform infrared (FT-IR) spectroscopy. Confocal microscopy, q-RT-PCR, and ATP lite assays were performed to evaluate the uptake and delivery of DOX- and CUR-loaded NGs on TC cell lines. Results: CUR-loaded NGs exhibited a mean diameter of approximately 204.3 nm and a zeta potential of -34.6 mV, indicative of a good stability. In vitro release studies revealed a sustained release profile of CUR over 72 h. Functional analyses demonstrated that Fmoc-FF-loaded NGs were internalized into TC cell lines. They were primarily localized in the cytoplasm rather than in early endosomes, thereby ensuring intracellular stability. Furthermore, Fmoc-FF NGs reduced the nuclear uptake kinetics of DOX in TC cells, suggesting a potential reduction in dose-limiting toxicity. Comparative studies with CUR-loaded NGs revealed similar internalization and delayed nuclear uptake, highlighting the efficacy of Fmoc-FF NGs in delivering hydrophobic agents. Conclusions: Overall, the data suggest that Fmoc-FF NGs represent a promising strategy for delivering agents with diverse physicochemical properties in TC, enhancing their efficacy and safety and warranting further investigation.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, 80146 Naples, Italy; (E.G.); (L.C.); (M.B.)
| | | | - Luca Cimmino
- IRCCS SYNLAB SDN, 80146 Naples, Italy; (E.G.); (L.C.); (M.B.)
| | | | - Francesca Maria Orlandella
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy; (F.M.O.); (G.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Neila Luciano
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Antonella Accardo
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Giuliana Salvatore
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy; (F.M.O.); (G.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
3
|
Can Karaca A, Rezaei A, Qamar M, Assadpour E, Esatbeyoglu T, Jafari SM. Lipid-based nanodelivery systems of curcumin: Recent advances, approaches, and applications. Food Chem 2025; 463:141193. [PMID: 39276542 DOI: 10.1016/j.foodchem.2024.141193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Despite its many beneficial effects, pharmaceutical applications of curcumin (CUR) are limited due to its chemical instability, low solubility/absorption and weak bioavailability. Recent advances in nanotechnology have enabled the development of CUR-loaded nanodelivery systems to tackle those issues. Within many different nanocarriers developed for CUR up to date, lipid-based nanocarriers (LBNs) are among the most extensively studied systems. LBNs such as nanoemulsions, solid lipid carriers, nanostructured phospholipid/surfactant carriers are shown to be potential delivery systems capable of improving the solubility, bioavailability, and chemical stability of CUR. The particle characteristics, stability, bioavailability, and release properties of CUR-loaded LBNs can be tailored via optimizing the formulation and processing parameters. This paper reviews the most recent studies on the development of various CUR-loaded LBNs. Approaches to the improvement of CUR bioavailability and release characteristics of LBNs are discussed. Furthermore, challenges in the development of CUR-loaded LBNs and their potential applications are presented.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Gutsche LC, Dörfler J, Hübner J. Curcumin as a complementary treatment in oncological therapy: a systematic review. Eur J Clin Pharmacol 2025; 81:1-33. [PMID: 39425780 PMCID: PMC11695395 DOI: 10.1007/s00228-024-03764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Curcumin, the active ingredient in turmeric, is employed by numerous cancer patients to support conventional cancer therapy. This systematic review aims to summarize the existing clinical evidence and to provide an overview of the potential benefits and risks associated with curcumin supplementation. METHODS In January 2024, we conducted a systematic search of five electronic databases (Embase, Cochrane, PsycInfo, CINAHL, and Medline) using a complex search strategy. We included randomized controlled trials on the use, effectiveness, and potential harm of additional curcumin therapy in adult patients under cancer treatment. The risk of bias was assessed using Cochrane revised Risk of Bias Tool 2.0. RESULTS This systematic review included 34 randomized controlled trials involving 2580 patients out of 11143 search results. Included patients were primarily diagnosed with head and neck cancer, followed by breast, prostate, and colorectal cancer. Therapy concepts encompassed topical or systemic curcumin administration. The studies reported heterogeneous results concerning oral and skin symptoms, pain, weight alteration and changes in body composition, survival, and disease progression. Significant findings were reported for oral mucositis and weight loss. Considering risk of bias, all studies had moderate to high risk of bias. Regarding side effects, one study reported significantly more vomiting in the curcumin group. CONCLUSION Although the results suggest promise in reducing mucositis and weight loss, a clear statement regarding the effectiveness of curcumin therapy on cancer patients cannot be made due to heterogeneous results and methodological limitations of the involved studies. Further investigations of higher quality are necessary to derive a definite recommendation for action.
Collapse
Affiliation(s)
- Lisa C Gutsche
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
| | - Jennifer Dörfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany
| | - Jutta Hübner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany
| |
Collapse
|
5
|
Zheng F, Lu J, Wang C, Yu H, Fu Y, Ma D. Curcumin enhances ATG3-dependent autophagy and inhibits metastasis in cervical carcinoma. Cell Div 2024; 19:33. [PMID: 39609925 PMCID: PMC11606299 DOI: 10.1186/s13008-024-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Cervical carcinoma poses a significant health threat, with traditional treatments proving inadequate in advanced stages. Curcumin, a bioactive compound derived from turmeric, exhibits notable anti-inflammatory, antioxidant, and antineoplastic properties, potentially modulating autophagy, and metastasis in cancer cells. This study examines curcumin's impact on autophagy and metastasis in cervical carcinoma, focusing on its interaction with autophagy-related gene 3 (ATG3). SiHa and HeLa cervical carcinoma cell lines were treated with curcumin, ATG3 knockdown (shATG3), and their combination. Cell migration was evaluated via wound healing assays, while cell proliferation was evaluated with CCK-8 assays. LC3 expression was assessed using immunofluorescence and western blotting. Molecular docking simulations identified curcumin's binding interactions with key proteins. Curcumin and shATG3 significantly inhibited both cell migration and proliferation, with a synergistic effect observed when combined. LC3 expression was enhanced, indicating increased autophagy. Docking studies revealed curcumin's potential binding to MMP2, MMP9, TGF-β, ATG3, LC3, and p62, suggesting modulation of these pathways. The combination of curcumin and ATG3 knockdown significantly inhibited cervical carcinoma cell migration and proliferation, while also enhancing autophagy, supporting the potential of curcumin as a therapeutic agent for cervical carcinoma. Further clinical research is needed to validate these findings.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Gynecology, Ningbo No. 2 Hospital (Hwa Mei Hospital, University of Chinese Academy of Sciences), Ningbo, Zhejiang Province, 315000, China
| | - Jingjing Lu
- Department of Gynecology, Ningbo University Affiliated People's Hospital, Ningbo, Zhejiang Province, 315000, China
| | - Chuhan Wang
- Department of Gynecology, Ningbo No. 2 Hospital (Hwa Mei Hospital, University of Chinese Academy of Sciences), Ningbo, Zhejiang Province, 315000, China
| | - Huimin Yu
- Department of Gynecology, Ningbo No. 2 Hospital (Hwa Mei Hospital, University of Chinese Academy of Sciences), Ningbo, Zhejiang Province, 315000, China
| | - Yanhong Fu
- Department of Gynecology, Ningbo No. 2 Hospital (Hwa Mei Hospital, University of Chinese Academy of Sciences), Ningbo, Zhejiang Province, 315000, China
| | - Danli Ma
- Department of Gynecology, Ningbo No. 2 Hospital (Hwa Mei Hospital, University of Chinese Academy of Sciences), Ningbo, Zhejiang Province, 315000, China.
| |
Collapse
|
6
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
7
|
Ameer SF, Mohamed MY, Elzubair QA, Sharif EAM, Ibrahim WN. Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? Front Oncol 2024; 14:1438040. [PMID: 39507759 PMCID: PMC11537944 DOI: 10.3389/fonc.2024.1438040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Despite advances in medical treatments, current therapeutic strategies, including radiotherapy, chemotherapy, targeted therapy, and surgical resection, have not significantly reduced the global incidence and mortality rates of cancer. Oncologists face considerable challenges in devising effective treatment plans due to the adverse side effects associated with standard therapies. Therefore, there is an urgent need for more effective and well-tolerated cancer treatments. Curcumin, a naturally occurring compound, has garnered significant attention for its diverse biological properties. Both preclinical studies and clinical trials have highlighted curcumin's potential in cancer treatment, demonstrating its ability to inhibit the proliferation of various cancer cell types through multiple cellular and molecular pathways. This paper examines the antineoplastic properties, and the therapeutic mechanisms including cell signalling pathways targeted by curcumin that are implicated in cancer development and explores the challenges in advancing curcumin as a viable anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Niederreiter M, Klein J, Schmitz SBM, Werner J, Mayer B. Anti-Cancer Properties of Two Intravenously Administrable Curcumin Formulations as Evaluated in the 3D Patient-Derived Cancer Spheroid Model. Int J Mol Sci 2024; 25:8543. [PMID: 39126111 PMCID: PMC11313667 DOI: 10.3390/ijms25158543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Curcumin (Cur) is a heavily used complementary derived drug from cancer patients. Spheroid samples derived from 82 patients were prepared and treated after 48 h with two Cur formulations (CurA, CurB) in mono- and combination therapy. After 72 h, cell viability and morphology were assessed. The Cur formulations had significant inhibitory effects of -8.47% (p < 0.001), CurA of -10.01% (-50.14-23.11%, p = 0.001) and CurB of -6.30% (-33.50-19.30%, p = 0.006), compared to their solvent controls Polyethylene-glycol, β-Cyclodextrin (CurA) and Kolliphor-ELP, Citrate (CurB). Cur formulations were more effective in prostate cancer (-19.54%) and less effective in gynecological non-breast cancers (0.30%). CurA showed better responses in samples of patients <40 (-13.81%) and >70 years of age (-17.74%). CurB had stronger effects in metastasized and heavily pretreated tumors. Combinations of Cur formulations and standard therapies were superior in 20/47 samples (42.55%) and inferior in 7/47 (14.89%). CurB stimulated chemo-doublets more strongly than monotherapies (-0.53% vs. -6.51%, p = 0.022) and more effectively than CurA (-6.51% vs. 3.33%, p = 0.005). Combinations of Cur formulations with Artesunate, Resveratrol and vitamin C were superior in 35/70 (50.00%) and inferior in 16/70 (22.86%) of samples. Cur formulations were significantly enhanced by combination with Artesunate (p = 0.020). Cur formulations showed a high variance in their anti-cancer effects, suggesting a need for individual testing before administration.
Collapse
Affiliation(s)
- Marlene Niederreiter
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Julia Klein
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Sebastian B. M. Schmitz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Xu D, Li L, Yu Z. Effect and mechanism of curcumin on colon cancer cell senescence through early growth response 1 (EGR1). Transl Cancer Res 2024; 13:3251-3261. [PMID: 39145095 PMCID: PMC11319940 DOI: 10.21037/tcr-24-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 08/16/2024]
Abstract
Background The expression level of early growth response 1 (EGR1) is elevated in colon cancer (CC) tissues and is closely associated with poor prognosis in colorectal cancer. However, the role of EGR1 as a transcription factor (TF) influencing cell senescence in the progression of CC remains largely unexplored. This study aims to investigate the impact of curcumin on colorectal cancer cell senescence by modulating EGR1. Methods Genes associated with cell senescence were obtained from a public database, and ChIP-X predicted TFs were utilized. The R2 database was employed to examine the relationship between gene expression and survival. CC cell lines were transfected with plasmids to achieve stable expression. Stable transfected cell lines were screened, and changes in RNA and protein expression were assessed using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB) analysis. Senescence levels were measured by SA-β-Gal staining. Cell proliferation and invasion capabilities were evaluated through soft agar and Matrigel invasion assays. Molecular docking was used to predict the interaction between curcumin and EGR1. Gene activity changes were detected using a dual luciferase reporter gene assay. Results The results indicated that EGR1 was overexpressed in CC tissues and correlated with poor prognosis. As a TF, EGR1 negatively regulated the expression of telomerase reverse transcriptase (TERT) and sirtuin 6 (SIRT6) genes associated with cell senescence. Knocking down EGR1 increased the rate of cell senescence and inhibited cell proliferation and invasion. Curcumin inhibited the transcriptional activity of EGR1, thereby promoting cell senescence and inhibiting tumor progression. Conclusions In conclusion, curcumin hampers the activity of TF EGR1, affecting the transcription and translation of target genes TERT and SIRT6, thus promoting cell senescence and inhibiting CC cell proliferation. These findings provide potential insights for targeted therapy of CC.
Collapse
Affiliation(s)
- Dan Xu
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linjun Li
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaomin Yu
- Department of Oncology, Xinhua Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
10
|
Mancuso C. Panax notoginseng: Pharmacological Aspects and Toxicological Issues. Nutrients 2024; 16:2120. [PMID: 38999868 PMCID: PMC11242943 DOI: 10.3390/nu16132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Current evidence suggests a beneficial role of herbal products in free radical-induced diseases. Panax notoginseng (Burk.) F. H. Chen has long occupied a leading position in traditional Chinese medicine because of the ergogenic, nootropic, and antistress activities, although these properties are also acknowledged in the Western world. The goal of this paper is to review the pharmacological and toxicological properties of P. notoginseng and discuss its potential therapeutic effect. A literature search was carried out on Pubmed, Scopus, and the Cochrane Central Register of Controlled Trials databases. The following search terms were used: "notoginseng", "gut microbiota", "immune system", "inflammation", "cardiovascular system", "central nervous system", "metabolism", "cancer", and "toxicology". Only peer-reviewed articles written in English, with the full text available, have been included. Preclinical evidence has unraveled the P. notoginseng pharmacological effects in immune-inflammatory, cardiovascular, central nervous system, metabolic, and neoplastic diseases by acting on several molecular targets. However, few clinical studies have confirmed the therapeutic properties of P. notoginseng, mainly as an adjuvant in the conventional treatment of cardiovascular disorders. Further clinical studies, which both confirm the efficacy of P. notoginseng in free radical-related diseases and delve into its toxicological aspects, are mandatory to broaden its therapeutic potential.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy; ; Tel.: +39-06-30154367; Fax: +39-06-3050159
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
11
|
Inchingolo F, Inchingolo AD, Latini G, Trilli I, Ferrante L, Nardelli P, Malcangi G, Inchingolo AM, Mancini A, Palermo A, Dipalma G. The Role of Curcumin in Oral Health and Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:660. [PMID: 38929099 PMCID: PMC11200638 DOI: 10.3390/antiox13060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin (Curcumin) belongs to the polyphenol family. It is extracted by drying the root of a plant of Asian origin, belonging to the Zingiberaceae family. The best-known species is Curcumincuma Longa. Curcumin has been recognized as having great therapeutic powers since ancient times. Studies on curcumin have since confirmed its powerful antioxidant properties, preventing both the formation of free radicals and their neutralization, having anti-inflammatory, antibacterial, immunological, and neuroprotective properties, as well as being a regulator of the intestinal microbiota with beneficial effects on the clinical manifestations of metabolic syndrome. Our study aimed to highlight how all these therapeutic aspects could benefit oral health, both preventing and improving the course of pathological processes. The effect of mouthwashes, and curcumin-based gels on the regulation of bacterial plaque and in the control of gingivitis, was largely comparable to that of using 0.20% chlorhexidine, with fewer side effects. Being a highly hydrophobic substance, it has a high permeability to cross the cell membrane. Bioavailability increases when combined with liposoluble substances (e.g., olive oil) and piperine, which improves absorption. Curcumin also has a negligible degree of toxicity, making it an excellent alternative to the use of gold standard products for oral disinfection.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| |
Collapse
|
12
|
Wang S, Zhang F, Chen J. Application and potential value of curcumin in prostate cancer: a meta-analysis based on animal models. Front Pharmacol 2024; 15:1379389. [PMID: 38783940 PMCID: PMC11111872 DOI: 10.3389/fphar.2024.1379389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Curcumin is gaining recognition as an agent for cancer chemoprevention and is presently administered to humans. However, the limited number of clinical trials conducted for the treatment of prostate cancer is noteworthy. Animal models serve as valuable tools for enhancing our understanding of disease mechanisms and etiology in humans. The objective of this study was to examine the anti-prostate cancer effects of curcumin in vivo for comprehending its current research status and potential clinical applicability. Methods Our methodology involved a systematic exploration of animal studies pertaining to curcumin and prostate cancer, as documented in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang database, Vip database, and SinoMed, up to 03 September 2023. Risk of bias was assessed using the SYRCLE Animal Study Risk of Bias tool. The results were combined using the RevMan 5.3. Results A comprehensive analysis was conducted on 17 studies encompassing 263 mouse transplantation tumor models. The findings of this meta-analysis demonstrated that curcumin exhibited a superior inhibitory effect on the volume of prostate cancer tumors in mice compared to the control group (standardized mean difference [SMD]: 1.16, 95% confidence interval [CI]: 0.52, 1.80, p < 0.001). Additionally, curcumin displayed a more effective inhibition of mice prostate cancer tumor weight (SMD: -3.27, 95% CI: -4.70, -1.83, p < 0.001). Furthermore, in terms of tumor inhibition rate, curcumin exhibited greater efficacy (SMD: 0.25, 95% CI: 0.23, 0.27, p < 0.001). Moreover, curcumin more effectively inhibited PCNA mRNA (SMD: -3.11, 95% CI: -4.60, -1.63, p < 0.001) and MMP2 mRNA (SMD: -3.19, 95% CI: 5.85, -0.53, p < 0.001). Conclusion Curcumin exhibited inhibitory properties towards prostate tumor growth and demonstrated a beneficial effect on prostate cancer treatment, thereby offering substantiation for further clinical investigations. It is important to acknowledge that the included animal studies exhibited considerable heterogeneity, primarily because of the limited number of studies included. Consequently, additional randomized controlled trials are required to comprehensively assess the efficacy of curcumin in humans. Systematic Review Registration (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023464661), identifier (CRD42023464661).
Collapse
Affiliation(s)
- Shiheng Wang
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, China
- Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengxia Zhang
- Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Chen
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, China
| |
Collapse
|
13
|
Ji J, Ma Z, Wang Y. Advancing Gastrointestinal Health: Curcumin's Efficacy and Nanopreparations. Molecules 2024; 29:1659. [PMID: 38611938 PMCID: PMC11013328 DOI: 10.3390/molecules29071659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin (CCM) is a polyphenol compound extracted from the turmeric rhizome. It has various biological activities, including antibacterial, anti-inflammatory, anti-cancer, and antioxidant. Due to its diverse activities, it is often used by researchers to study the therapeutic effects on various diseases. However, its poor solubility leads to poor bioavailability, and it is necessary to increase the water solubility with the help of carriers to improve the therapeutic effect. Gastrointestinal disease is a major global health problem that continues to affect human health. In this review, we have summarized the possible mechanism and therapeutic effect of CCM in various gastrointestinal diseases, and the improvement in the curative effect of CCM with nanopreparation. Finally, we concluded that there have been many clinical trials of CCM in combination with other drugs for the treatment of gastrointestinal disease, but so far, few have used CCM nanomaterials for treatment. Although in vitro and preclinical experiments have shown that nanopreparations can improve the efficacy of CCM, there are still insufficient studies on the safety of carriers.
Collapse
Affiliation(s)
- Jialin Ji
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China;
| | - Zhaojie Ma
- School of Humanities and Medicine, Shandong Second Medical University, Weifang 261053, China;
| | - Yingshuai Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
14
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
15
|
Booth L, Roberts JL, West C, Dent P. GZ17-6.02 interacts with proteasome inhibitors to kill multiple myeloma cells. Oncotarget 2024; 15:159-174. [PMID: 38441437 PMCID: PMC10913917 DOI: 10.18632/oncotarget.28558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
GZ17-6.02, a synthetically manufactured compound containing isovanillin, harmine and curcumin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with a recommended phase 2 dose (RP2D) of 375 mg PO BID. GZ17-6.02 was more efficacious as a single agent at killing multiple myeloma cells than had previously been observed in solid tumor cell types. GZ17-6.02 interacted with proteasome inhibitors in a greater than additive fashion to kill myeloma cells and alone it killed inhibitor-resistant cells to a similar extent. The drug combination of GZ17-6.02 and bortezomib activated ATM, the AMPK and PERK and inactivated ULK1, mTORC1, eIF2α, NFκB and the Hippo pathway. The combination increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM, and reduced the levels of BCL-XL and MCL1. GZ17-6.02 interacted with bortezomib to enhance autophagosome formation and autophagic flux, and knock down of ATM, AMPKα, ULK1, Beclin1 or ATG5 significantly reduced both autophagy and tumor cell killing. Knock down of BAK and BIM significantly reduced tumor cell killing. The expression of HDACs1/2/3 was significantly reduced beyond that previously observed in solid tumor cells and required autophagy. This was associated with increased acetylation and methylation of histone H3. Combined knock down of HDACs1/2/3 caused activation of ATM and the AMPK and caused inactivation of ULK1, mTORC1, NFκB and the Hippo pathway. HDAC knock down also enhanced ATG13 phosphorylation, increased BAK levels and reduced those of BCL-XL. Collectively, our present studies support performing additional in vivo studies with multiple myeloma cells.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L. Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cameron West
- Genzada Pharmaceuticals, Hutchinson, KS 67502, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
16
|
Booth MR, Booth L, Roberts JL, West C, Dent P. GZ17-6.02 interacts with bexarotene to kill mycosis fungoides cells. Oncotarget 2024; 15:124-133. [PMID: 38329728 PMCID: PMC10852062 DOI: 10.18632/oncotarget.28557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
GZ17-6.02, composed of curcumin, harmine and isovanillin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with an RP2D of 375 mg PO BID. The biology of GZ17-6.02 in malignant T cells and in particular those derived from mycosis fungoides (MF) patients, has not been studied. GZ17-6.02 alone and in combination with standard-of-care agents was effective in killing MF cells. All three components are necessary for optimal killing of MF cells. GZ17-6.02 activated ATM, the AMPK, NFκB and PERK and inactivated ERK1/2, AKT, ULK1, mTORC1, eIF2α, and reduced the expression of BCL-XL and MCL1. GZ17-6.02 increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM. GZ17-6.02 in a dose-dependent fashion enhanced autophagosome formation and autophagic flux, and tumor cell killing. Signaling by ATM and AMPK were both required for efficient killing but not for the dose-response effect whereas ER stress (eIF2α) and macroautophagy (Beclin1, ATG5) were required for both efficient killing and the dose-response. Knock down of the death receptor CD95 reduced killing by ~20% and interacted with autophagy inhibition to further reduce killing, collectively, by ~70%. Inhibition of autophagy and knock down of death-mediators downstream of the mitochondrion, AIF and caspase 3, almost abolished tumor cell killing. Hence in MF cells, GZ17-6.02 is a multi-factorial killer, utilizing ER stress, macroautophagy, death receptor signaling and directly causing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Michael R. Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L. Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cameron West
- Genzada Pharmaceuticals, Hutchinson, KS 67502, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
17
|
Consoli GML, Maugeri L, Forte G, Buscarino G, Gulino A, Lanzanò L, Bonacci P, Musso N, Petralia S. Red light-triggerable nanohybrids of graphene oxide, gold nanoparticles and thermo-responsive polymers for combined photothermia and drug release effects. J Mater Chem B 2024; 12:952-961. [PMID: 37975827 DOI: 10.1039/d3tb01863f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of multifunctional nanohybrid systems for combined photo-induced hyperthermia and drug release is a challenging topic in the research of advanced materials for application in the biomedical field. Here, we report the first example of a three-component red-light-responsive nanosystem consisting of graphene oxide, gold nanoparticles and poly-N-isopropylacrylamide (GO-Au-PNM). The GO-Au-PNM nanostructures were characterized by spectroscopic techniques and atomic force microscopy. They exhibited photothermal conversion effects at various wavelengths, lower critical solution temperature (LCST) behaviour, and curcumin (Curc) loading capacity. The formation of GO-Au-PNM/Curc adducts and photothermally controlled drug release, triggered by red-light excitation (680 nm), were demonstrated using spectroscopic techniques. Drug-polymer interaction and drug-release mechanism were well supported by modelling simulation calculations. The cellular uptake of GO-Au-PNM/Curc was imaged by confocal laser scanning microscopy. In vitro experiments revealed the excellent biocompatibility of the GO-Au-PNM that did not affect the viability of human cells.
Collapse
Affiliation(s)
- Grazia M L Consoli
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy.
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, 34148 Trieste, Italy
| | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Gianpiero Buscarino
- Department of Physics and Chemistry, University of Palermo, Via Archirafi 36, Palermo, Italy
| | - Antonino Gulino
- Department of Chemical Science, University of Catania, and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Salvatore Petralia
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy.
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, 34148 Trieste, Italy
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| |
Collapse
|
18
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
19
|
Srinivas AN, Suresh D, Chidambaram SB, Santhekadur PK, Kumar DP. Apoptosis antagonizing transcription factor-mediated liver damage and inflammation to cancer: Therapeutic intervention by curcumin in experimental metabolic dysfunction associated steatohepatitis-hepatocellular carcinoma. J Cell Physiol 2024; 239:135-151. [PMID: 37942831 DOI: 10.1002/jcp.31151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
In tandem with the expanding obesity pandemic, the prevalence of metabolic dysfunction associated steatohepatitis (MASH, formerly known as NASH)- driven hepatocellular carcinoma (HCC) is predicted to rise globally, creating a significant need for therapeutic interventions. We previously identified the upregulation of apoptosis antagonizing transcription factor (AATF), which is implicated in facilitating the progression from MASH to HCC. The objective of this study was to examine whether the intervention of curcumin could alleviate AATF-mediated MASH, inhibit tumor growth, and elucidate the underlying mechanism. A preclinical murine model mimicking human MASH-HCC was employed, subjecting mice to either a chow diet normal water (CDNW) or western diet sugar water (WDSW) along with very low dose of carbon tetrachloride (CCl4 - 0.2 μL/g, weekly). Mice receiving curcumin (CUR) alongside WDSW/CCl4 exhibited significant improvements, including reduced liver enzymes, dyslipidemia, steatosis, inflammation, and hepatocellular ballooning. Curcumin treatment also suppressed hepatic expression of inflammatory, fibrogenic, and oncogenic markers. Of note, there was a significant reduction in the expression of AATF upon curcumin treatment in WDSW/CCl4 mice and human HCC cells. In contrast, curcumin upregulated Kruppel-like factor 4 (KLF4) in MASH liver and HCC cells, which is known to downregulate sp1 (specificity protein-1) expression. Thus, curcumin treatment effectively inhibited the progression of MASH to HCC by downregulating the expression of AATF via the KLF4-Sp1 signaling pathway. These preclinical findings establish a novel molecular connection between curcumin and AATF in reducing hepatocarcinogenesis, and provide a strong rationale for the development of curcumin as a viable treatment for MASH-HCC in humans.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
20
|
Luss AL, Bagrov DV, Yagolovich AV, Kukovyakina EV, Khan II, Pokrovsky VS, Shestovskaya MV, Gasparian ME, Dolgikh DA, Kuskov AN. Toxicity Evaluation and Controlled-Release of Curcumin-Loaded Amphiphilic Poly-N-vinylpyrrolidone Nanoparticles: In Vitro and In Vivo Models. Pharmaceutics 2023; 16:8. [PMID: 38276486 PMCID: PMC10818735 DOI: 10.3390/pharmaceutics16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Curcumin attracts huge attention because of its biological properties: it is antiproliferative, antioxidant, anti-inflammatory, immunomodulatory and so on. However, its usage has been limited by poor water solubility and low bioavailability. Herein, to solve these problems, we developed curcumin-loaded nanoparticles based on end-capped amphiphilic poly(N-vinylpyrrolidone). Nanoparticles were obtained using the solvent evaporation method and were characterized by dynamic and electrophoretic light scattering, transmission electron (TEM) and atomic force (AFM) microscopy. The average particle size was 200 nm, and the ζ-potential was -4 mV. Curcumin-release studies showed that nanoparticles are stable in aqueous solutions. An in vitro release study showed prolonged action in gastric, intestinal and colonic fluids, consistently, and in PBS. In vitro studies on epidermoid carcinoma and human embryonic kidney cells showed that the cells absorbed more curcumin in nanoparticles compared to free curcumin. Nanoparticles are safe for healthy cells and show high cytotoxicity for glioblastoma cells in cytotoxicity studies in vitro. The median lethal dose was determined in an acute toxicity assay on zebrafish and was 23 μM. Overall, the curcumin-loaded nanoparticles seem promising for cancer treatment.
Collapse
Affiliation(s)
- Anna L. Luss
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| | - Dmitry V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (D.V.B.); (A.V.Y.); (D.A.D.)
| | - Anne V. Yagolovich
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (D.V.B.); (A.V.Y.); (D.A.D.)
| | - Ekaterina V. Kukovyakina
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| | - Irina I. Khan
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia (V.S.P.)
- Department of Biochemistry, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia (V.S.P.)
- Department of Biochemistry, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maria V. Shestovskaya
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| | - Marine E. Gasparian
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry A. Dolgikh
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (D.V.B.); (A.V.Y.); (D.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey N. Kuskov
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| |
Collapse
|
21
|
Halma MTJ, Tuszynski JA, Marik PE. Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients 2023; 15:4245. [PMID: 37836529 PMCID: PMC10574675 DOI: 10.3390/nu15194245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- EbMC Squared CIC, Bath BA2 4BL, UK
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
| | - Paul E. Marik
- Frontline COVID-19 Critical Care Alliance, Washington, DC 20036, USA
| |
Collapse
|
22
|
Xi G, Dong Q, Yang B, Jiao D, Khan S. Curcumin's Dose-Dependent Attenuation of Gastric Cancer Cell Progression Via the PI3K Pathway Blockade. Dose Response 2023; 21:15593258231203585. [PMID: 37933268 PMCID: PMC10625731 DOI: 10.1177/15593258231203585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Background: Gastric cancer stands as a primary cause of cancer-related deaths worldwide, making the discovery of new therapeutic agents essential for enhancing treatment outcomes. Curcumin, a polyphenolic compound found in turmeric (Curcuma longa), has demonstrated potential in multiple cancer types due to its anti-cancer characteristics. This research aimed to examine the impact of curcumin on gastric cancer cell growth, migration, and invasion, as well as its influence on the phosphoinositide 3-kinase (PI3K) signaling cascade. Methods: Gastric cancer cell lines were exposed to varying curcumin concentrations, followed by assessments of cell viability, migration, and invasion. Furthermore, gene and protein expression levels associated with the PI3K signaling cascade were evaluated using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Results: The findings revealed a dose-dependent decrease in cell viability, migration, and invasion in gastric cancer cells treated with curcumin. Additionally, curcumin administration led to the downregulation of key genes and proteins within the PI3K signaling process, such as PI3K, Akt, and mTOR. Conclusion: These findings propose that curcumin may exercise its anti-cancer effects on gastric cancer cells, partly by suppressing the PI3K signaling pathway. This study's outcomes support curcumin's potential as a therapeutic agent for gastric cancer and encourage further exploration of its underlying molecular mechanisms and in vivo effectiveness.
Collapse
Affiliation(s)
- Gen Xi
- Department of General Surgery, Baoji People’s Hospital, Baoji, China
| | - Qingtao Dong
- Department of General Surgery, Baoji People’s Hospital, Baoji, China
| | - Bo Yang
- Department of General Surgery, Baoji People’s Hospital, Baoji, China
| | - Desheng Jiao
- Department of General Surgery, Xi'an Labor Union Hospital, Xi'an, China
| | - Shahanavaj Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Arenaza-Corona A, Obregón-Mendoza MA, Meza-Morales W, Ramírez-Apan MT, Nieto-Camacho A, Toscano RA, Pérez-González LL, Sánchez-Obregón R, Enríquez RG. The Homoleptic Curcumin-Copper Single Crystal (ML 2): A Long Awaited Breakthrough in the Field of Curcumin Metal Complexes. Molecules 2023; 28:6033. [PMID: 37630284 PMCID: PMC10458717 DOI: 10.3390/molecules28166033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The first single crystal structure of the homoleptic copper (II) ML2 complex (M=Cu (II), L = curcumin) was obtained and its structure was elucidated by X-ray diffraction showing a square planar geometry, also confirmed by EPR. The supramolecular arrangement is supported by C-H···O interactions and the solvent (MeOH) plays an important role in stabilizing the crystal packing Crystallinity was additionally assessed by XRD patterns. The log P value of the complex (2.3 ± 0.15) was determined showing the improvement in water solubility. The cytotoxic activity of the complex against six cancer cell lines substantially surpasses that of curcumin itself, and it is particularly selective against leukemia (K562) and human glioblastoma (U251) cell lines, with similar antioxidant activity to BHT. This constitutes the first crystal structure of pristine curcumin complexed with a metal ion.
Collapse
Affiliation(s)
- Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Marco A. Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayagüez, PR 00680, USA;
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén A. Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Leidys L. Pérez-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén Sánchez-Obregón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| |
Collapse
|