1
|
Rasekh M, Arshad MS, Ahmad Z. Advances in Drug Delivery Integrated with Regenerative Medicine: Innovations, Challenges, and Future Frontiers. Pharmaceutics 2025; 17:456. [PMID: 40284451 PMCID: PMC12030587 DOI: 10.3390/pharmaceutics17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Advances in drug delivery systems adapted with regenerative medicine have transformed healthcare by introducing innovative strategies to treat (and repair in many instances) disease-impacted regions of the human body. This review provides a comprehensive analysis of the latest developments and challenges in integrating drug delivery technologies with regenerative medicine. Recent advances in drug delivery technologies, including the design of biomaterials, localized delivery techniques, and controlled release systems guided by mathematical models, are explored to illustrate their role in enhancing therapeutic precision and efficacy. Additionally, regenerative medicine approaches are analyzed, with a focus on extracellular matrix components, stem cell-based therapies, and emerging strategies for organ regeneration in both soft and hard tissue and in vitro model engineering. In particular, the review also discusses the applications of cellular components, including stem cells, immune cells, endothelial cells, and specialized cells such as chondrocytes and osteoblasts, and highlights advancements in cell delivery methods and cell-cell interaction modulation. In addition, future directions and pivotal trends emphasizing the importance of interdisciplinary collaboration and cutting-edge innovations are provided to address successful therapeutic outcomes in regenerative medicine.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University of London, Uxbridge UB8 3PH, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
2
|
Pitts J, Hänsch R, Roger Y, Hoffmann A, Menzel H. 3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering. Polymers (Basel) 2025; 17:383. [PMID: 39940585 PMCID: PMC11820431 DOI: 10.3390/polym17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Tissue engineering has emerged as a promising approach for improved regeneration of native tissue and could increase the quality of life of many patients. However, the treatment of injured tissue transitions is still in its early stages, relying primarily on a purely physical approach in medical surgery. A biodegradable implant with a modified surface that is capable of biological active protein delivery via a nanoparticulate release system could advance the field of musculoskeletal disorder treatments enormously. In this study, interconnected 3D macroporous scaffolds based on Polycaprolactone (PCL) were fabricated in a successive process of blending, annealing and leaching. Blending with varying parts of Polyethylene oxide (PEO), NaCl and (powdered) sucrose and altering processing conditions yielded scaffolds with a huge variety of morphologies. The resulting unmodified hydrophobic scaffolds were modified using two graft polymers (CS-g-PCLx) with x = 29 and 56 (x = PCL units per chitosan unit). Due to the chitosan backbone hydrophilicity was increased and a platform for a versatile nanoparticulate release system was introduced. The graft polymers were synthesized via ring opening polymerization (ROP) of ε-Caprolactone using hydroxy groups of the chitosan backbone as initiators (grafting from). The suspected impact on biocompatibility of the modification was investigated by in vitro cell testing. In addition, the CS-g-PCL modification opened up the possibility of Layer by Layer (LbL) coating with alginate (ALG) and TGF-β3-loaded chitosan tripolyphosphate (CS-TGF-β3-TPP) nanoparticles. The subsequent release study showed promising amounts of growth factor released regarding successful in vitro cell differentiation and therefore could have a possible therapeutic impact.
Collapse
Affiliation(s)
- Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
4
|
Emonts C, Bauer B, Pitts J, Roger Y, Hoffmann A, Menzel H, Gries T. Mechanical, Biological and In Vitro Degradation Investigation of Braided Scaffolds for Tendon and Ligament Tissue Engineering Based on Different Polycaprolactone Materials with Chitosan-Graft-PCL Surface Modification. Polymers (Basel) 2024; 16:2349. [PMID: 39204570 PMCID: PMC11360056 DOI: 10.3390/polym16162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Injuries to tendons and ligaments are highly prevalent in the musculoskeletal system. Current treatments involve autologous transplants with limited availability and donor site morbidity. Tissue engineering offers a new approach through temporary load-bearing scaffolds. These scaffolds have to fulfill numerous requirements, the majority of which can be met using braiding combined with high-strength polycaprolactone (PCL) fibers. Considering regulatory requirements, several medical-grade PCL materials were assessed regarding their mechanical, degradational and cell biological properties. In the course of the investigation, an excellent fiber tensile strength of up to 850 MPa was achieved. The fibers were braided into multilayer scaffolds and scaled to match the human ACL. These were characterized regarding their morphology and their mechanical and degradational properties. Two strategies were followed to provide biological cues: (a) applying a chitosan-graft-PCL surface modification and (b) using non-circular fiber morphologies as topographical stimuli. Cell vitality assays showed generally positive cytocompatibility and no impairments due to the surface modification or material grade. The best cell vitality was achieved with a scaffold consisting of snowflake-shaped monofilaments combined with a 25° braiding angle. The surface modification equips the scaffold with a release platform for function molecules (as recently demonstrated) so that a holistic approach to addressing the numerous requirements is provided.
Collapse
Affiliation(s)
- Caroline Emonts
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany
| | - Benedict Bauer
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany
| | - Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Thomas Gries
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Toyoda M, Fukuda T, Fujimoto R, Kawakami K, Hayashi C, Nakao Y, Watanabe Y, Aoki T, Shida M, Sanui T, Taguchi M, Yamamichi K, Okabe A, Okada T, Oka K, Nakayama K, Nishimura F, Kajioka S. Scaffold-free bone-like 3D structure established through osteogenic differentiation from human gingiva-derived stem cells. Biochem Biophys Rep 2024; 38:101656. [PMID: 38379857 PMCID: PMC10878834 DOI: 10.1016/j.bbrep.2024.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction & objectives Stem cell therapy for regenerative medicine has been sincerely investigated, but not still popular although some clinical trials show hopeful results. This therapy is suggested to be a representative candidate such as bone defect due to the accident, iatrogenic resection oncological tumor, congenital disease, and severe periodontitis in oral region. Recently, the Bio-3D printer "Regenova®" has been introduced as an innovative three-dimensional culture system, equipped scaffold-free bio-assembling techniques without any biomaterials. Therefore, we expected a mount of bone defect could be repaired by the structure established from this Bio-3D printer using osteogenic potential stem cells. Material & methods The gingival tissue (1x1 mm) was removed from the distal part of the lower wisdom tooth of the patients who agreed our study. Human Gingival Mesenchymal Stem Cells (hGMSCs) were isolated from this tissue and cultured, since we confirmed the characteristics such as facile isolation and accelerated proliferation, further, strong potential of osteogenic-differentiation. Spheroids were formed using hGMSC in 96-well plates designed for low cell adhesion. The size of the spheroids was measured, and fluorescent immunostaining was employed to verify the expression of stem cell and apoptosis marker, and extracellular matrix. Following four weeks of bone differentiation, μCT imaging was performed. Calcification was confirmed by alizarin red and von Kossa staining. Fluorescent immunostaining was utilized to assess the expression of markers indicative of advanced bone differentiation. Results We have established and confirmed the spheroids (∼600 μm in diameter) constructed from human GMSCs (hGMSCs) still maintain stem cell potentials and osteogenic differentiation abilities from the results that CD73 and not CD34 were expressed as stem cell positive and negative marker, respectively. These spheroids were pilled up like cylindal shape to the "Kenzan" platform of Bio-3D printer and cultured for 7days. The cylindal structure originated from compound spheroids were tried to differentiate into bone four weeks with osteogenic induction medium. The calcification of bio-3D printed bone-like structures was confirmed by alizarin red and Von Kossa staining. In addition, μCT analysis revealed that the HU (Hounsfield Unit) of the calcified structures was almost identical to that of trabecular bone. Immunofluorescent staining detected osteocalcin expression, a late-stage bone differentiation marker. Conclusion For the first time, we have achieved the construction of a scaffold-free, bone-like luminal structure through the assembly of spheroids comprised of this hGMSCs. This success is sure to be close to the induction of clinical application against regenerative medicine especially for bone defect disease.
Collapse
Affiliation(s)
- Masaaki Toyoda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryota Fujimoto
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Kentaro Kawakami
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tsukasa Aoki
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miyu Shida
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masahide Taguchi
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Kensuke Yamamichi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ayami Okabe
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsunori Okada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
6
|
Bauer B, Emonts C, Pitts J, Buhl EM, Eschweiler J, Hänsch R, Betsch M, Gries T, Menzel H. Topographically and Chemically Enhanced Textile Polycaprolactone Scaffolds for Tendon and Ligament Tissue Engineering. Polymers (Basel) 2024; 16:488. [PMID: 38399866 PMCID: PMC10893359 DOI: 10.3390/polym16040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.
Collapse
Affiliation(s)
- Benedict Bauer
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Caroline Emonts
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| | - Eva Miriam Buhl
- Institute of Pathology, Electron Microscopy Facility, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Department of Trauma and Reconstructive Surgery, BG Hospital Bergmannstrost, Merseburgerstr. 165, 06112 Halle (Saale), Germany;
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstraße 1, 38106 Braunschweig, Germany
| | - Marcel Betsch
- Department of Orthopaedics and Trauma Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Thomas Gries
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Wang X, Li Z, Liu J, Wang C, Bai H, Zhu X, Wang H, Wang Z, Liu H, Wang J. 3D-printed PCL scaffolds with anatomy-inspired bionic stratified structures for the treatment of growth plate injuries. Mater Today Bio 2023; 23:100833. [PMID: 37920293 PMCID: PMC10618519 DOI: 10.1016/j.mtbio.2023.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/27/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023] Open
Abstract
The growth plate is a cartilaginous tissue with three distinct zones. Resident chondrocytes are highly organized in a columnar structure, which is critical for the longitudinal growth of immature long bones. Once injured, the growth plate may potentially be replaced by bony bar formation and, consequently, cause limb abnormalities in children. It is well-known that the essential step in growth plate repair is the remolding of the organized structure of chondrocytes. To achieve this, we prepared an anatomy-inspired bionic Poly(ε-caprolactone) (PCL) scaffold with a stratified structure using three-dimensional (3D) printing technology. The bionic scaffold is engineered by surface modification of NaOH and collagen Ⅰ (COL Ⅰ) to promote cell adhesion. Moreover, chondrocytes and bone marrow mesenchymal stem cells (BMSCs) are loaded in the most suitable ratio of 1:3 for growth plate reconstruction. Based on the anatomical structure of the growth plate, the bionic scaffold is designed to have three regions, which are the small-, medium-, and large-pore-size regions. These pore sizes are used to induce BMSCs to differentiate into similar structures such as the growth plate. Remarkably, the X-ray and histological results also demonstrate that the cell-loaded stratified scaffold can successfully rebuild the structure of the growth plate and reduce limb abnormalities, including limb length discrepancies and angular deformities in vivo. This study provides a potential method of preparing a bioinspired stratified scaffold for the treatment of growth plate injuries.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Jiaqi Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Xiujie Zhu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Hui Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| |
Collapse
|