1
|
Tao J, Yuan X, Zheng M, Jiang Y, Chen Y, Zhang F, Zhou N, Zhu J, Deng Y. Bibliometric and visualized analysis of cancer nanomedicine from 2013 to 2023. Drug Deliv Transl Res 2024; 14:1708-1724. [PMID: 38161193 DOI: 10.1007/s13346-023-01485-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/03/2024]
Abstract
Cancer nanomedicine has been an emerging field for drug development against malignant tumors during the past three decades. A bibliometric analysis was performed to characterize the current international trends and present visual representations of the evolution and emerging trends in the research and development of nanocarriers for cancer treatment. This study employed bibliometric analysis and visualization techniques to analyze the literature on antitumor nanocarriers published between 2013 and 2023. A total of 98,980 articles on antitumor nanocarriers were retrieved from the Web of Science Core Collection (WoSCC) database and analyzed using the Citespace software for specific characteristics such as publication year, countries/regions, organizations, keywords, and references. Network visualization was constructed by VOSviewer and Citespace. From 2013 to 2023, the annual global publications increased 7.39 times, from 1851 to 13,683. People's Republic of China (2588 publications) was the most productive country. Chinese Academy of Sciences (298 publications) was the most productive organization. The top 5 high-frequency keywords were "nanoparticles," "drug delivery," "nanomedicine," "cancer," and "nanocarriers." The keywords with the strongest citation bursts recently were "cancer immunotherapy," "microenvironment," "antitumor immunity," etc., which indicated the emerging frontiers of antitumor nanomedicine. The co-occurrence cluster analysis of the keywords formed 6 clusters, and most of the top 10 publications by citation counts focused on cluster #1 (nanocarriers) and cluster #2 (cancer immunotherapy). We further provided insightful discussions into the identified subtopics to help researchers gain more details of current trends and hotspots in this field. The present study processes a macro-level literature analysis of antitumor nanocarriers and provides new perspectives and research directions for future development in cancer nanomedicine.
Collapse
Affiliation(s)
- Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xiaoming Yuan
- Soochow University Library, Soochow University, Suzhou, 215006, China
| | - Min Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yingqian Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fangrui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Nan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jianguo Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Ke Z, Chen H, Zhao Y, Ke J, Xie Y, Zeng R, Hua Y, Xiong Z, Wang X. Acupuncture Point Selection Patterns for Chemotherapy-Induced Nausea and Vomiting: A Data Mining Analysis. Complement Med Res 2024; 31:343-358. [PMID: 38710159 PMCID: PMC11343088 DOI: 10.1159/000538839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Chemotherapy-induced nausea and vomiting (CINV) significantly impacts the quality of life of cancer patients undergoing treatment, often leading to treatment interruptions and compromised adherence to therapy. Our objective was to identify patterns for selecting the optimal acupoints and explore the treatment principles behind forming effective acupoint combinations for CINV. METHODS Clinical trials were retrieved from eight databases. Descriptive statistics analysis was performed, followed by association rule mining, network analysis, hierarchical cluster analysis, and correlation analysis, all implemented with R software. RESULTS In summary, this study investigated the potential acupoints and combinations for CINV treatment in 104 published controlled clinical trials and randomized controlled trials. 104 prescriptions involving 48 acupoints were extracted. ST36, PC6, CV12, SP4, LI4, and ST25 appeared to be the most frequently used acupoints for CINV. Stomach Meridian, Conception Vessel (Renmai), and Pericardium Meridian were the most common selected meridians. The lower limbs, chest, and abdomen appeared as the predominant sites for acupoint selection. Co-occurrence network analysis indicated that ST36, PC6, and CV12 were central key node acupoints. The clustering analysis displayed the treatment principle of "harmonizing the stomach, stopping vomiting, and descending counterflow." Association rule mining revealed that the combination of CV4, CV12, ST36, CV6, and PC6 emerged as the optimal acupoint combination for effectively treating CINV. CONCLUSION Overall, our research provides evidence-based optimal acupuncture prescription for acupuncturists to treat CINV and presents a complementary therapy for chemotherapy physicians as well as patients to address CINV symptoms.
Collapse
Affiliation(s)
- Zi Ke
- Department of Integrated Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Hongruyu Chen
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Yong Zhao
- Department of Rehabilitation, General Hospital of Central Theater Command, Wuhan, China
| | - Jixian Ke
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youqiong Xie
- Department of Integrated Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runxin Zeng
- Department of Integrated Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yini Hua
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihao Xiong
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuanxuan Wang
- Department of Integrated Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Enyu X, Xinbo L, Xuelian C, Huimin C, Yin C, Yan C. Construction and performance evaluation of pH-responsive oxidized hyaluronic acid hollow mesoporous silica nanoparticles. Int J Biol Macromol 2024; 257:128656. [PMID: 38065461 DOI: 10.1016/j.ijbiomac.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
In this study, hollow mesoporous silica (HMSN) was created to facilitate drug distribution using the hard template method. The oxidized hyaluronic acid (oxiHA) was coated on the carrier surface by the Schiff base reaction, producing the pH-responsive nanoparticles HMSNs-DOX-oxiHA targeted by CD44 and preventing drug leakage from mesopores. The prepared nanoparticles had a size of 151.79 ± 13.52 nm and a surface potential of -8.42 ± 0.48 mV. The rich mesoporous structure and internal cavity of HMSNs-NH2 achieved the effective encapsulation and loading rates of doxorubicin (DOX) at 76.84 ± 0.24 % and 18.73 ± 0.05 %, respectively. Owing to the pH sensitivity of imine bonds, HMSNs-DOX-oxiHA has a good pH response and release performance. The in vitro experiments showed that the nanoparticles were not cytotoxic and could enhance HCT-116 uptake efficiency by hyaluronic acid/CD44 receptor-mediated endocytosis, effectively inhibiting tumor cell proliferation and reducing toxic side effects on normal cells. In summary, the polysaccharide-based nano-drug delivery system constructed in this experiment not only has the basic response properties of a carrier but also introduces the bioactive advantages of natural polysaccharides.
Collapse
Affiliation(s)
- Xu Enyu
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Liu Xinbo
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Xuelian
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Huimin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Chen Yan
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| |
Collapse
|
4
|
Crintea A, Constantin AM, Motofelea AC, Crivii CB, Velescu MA, Coșeriu RL, Ilyés T, Crăciun AM, Silaghi CN. Targeted EGFR Nanotherapy in Non-Small Cell Lung Cancer. J Funct Biomater 2023; 14:466. [PMID: 37754880 PMCID: PMC10532491 DOI: 10.3390/jfb14090466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Despite advances in treatment, the prognosis remains poor, highlighting the need for novel therapeutic strategies. The present review explores the potential of targeted epidermal growth factor receptor (EGFR) nanotherapy as an alternative treatment for NSCLC, showing that EGFR-targeted nanoparticles are efficiently taken up by NSCLC cells, leading to a significant reduction in tumor growth in mouse models. Consequently, we suggest that targeted EGFR nanotherapy could be an innovative treatment strategy for NSCLC; however, further studies are needed to optimize the nanoparticles and evaluate their safety and efficacy in clinical settings and human trials.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Alexandru C. Motofelea
- Department of Internal Medicine, University of Medicine and Pharmacy “Victor Babeș”, 300041 Timișoara, Romania;
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Maria A. Velescu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania;
| | - Răzvan L. Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mureș, Romania;
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Alexandra M. Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| |
Collapse
|
5
|
Yin L, Thaker H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering (Basel) 2023; 10:813. [PMID: 37508840 PMCID: PMC10376142 DOI: 10.3390/bioengineering10070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent advances in targeted cancer therapy hold great promise for both research and clinical applications and push the boundaries in finding new treatments for various currently incurable cancers. However, these therapies require specific cell-targeting mechanisms for the efficient delivery of drug cargo across the cell membrane to reach intracellular targets and avoid diffusion to unwanted tissues. Traditional drug delivery systems suffer from a limited ability to travel across the barriers posed by cell membranes and, therefore, there is a need for high doses, which are associated with adverse reactions and safety concerns. Bacterial toxins have evolved naturally to specifically target cell subtypes via their receptor binding module, penetrating the cell membrane efficiently through the membrane translocation process and then successfully delivering the toxic cargo into the host cytosol. They have, thus, been harnessed for the delivery of various drugs. In this review, we focus on bacterial toxin translocation mechanisms and recent progress in the targeted delivery systems of cancer therapy drugs that have been inspired by the receptor binding and membrane translocation processes of the anthrax toxin protective antigen, diphtheria toxin, and Pseudomonas exotoxin A. We also discuss the challenges and limitations of these studies that should be addressed before bacterial toxin-based drug delivery systems can become a viable new generation of drug delivery approaches in clinical translation.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|