1
|
Gabaldón-Figueira JC, Ros-Lucas A, Martínez-Peinado N, Blackburn G, Losada-Galvan I, Posada E, Ballart C, Escabia E, Capellades J, Yanes O, Pinazo MJ, Gascón J, Alonso-Padilla J. Changes in lipid abundance are associated with disease progression and treatment response in chronic Trypanosoma cruzi infection. Parasit Vectors 2024; 17:459. [PMID: 39521974 PMCID: PMC11549750 DOI: 10.1186/s13071-024-06548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Chagas disease, caused by the parasite Trypanosoma cruzi, is a zoonosis that affects more than seven million people. Current limitations on the diagnosis of the disease hinder the prognosis of patients and the evaluation of treatment efficacy, slowing the development of new therapeutic options. The infection is known to disrupt several host metabolic pathways, providing an opportunity for the identification of biomarkers. METHODS The metabolomic and lipidomic profiles of a cohort of symptomatic and asymptomatic patients with T. cruzi infection and a group of uninfected controls were analysed using liquid chromatography/mass spectrometry. Differences among all groups and changes before and after receiving anti-parasitic treatment across those with T. cruzi infection were explored. RESULTS Three lipids were found to differentiate between symptomatic and asymptomatic participants: 10-hydroxydecanoic acid and phosphatidylethanolamines PE(18:0/20:4) and PE(18:1/20:4). Additionally, sphinganine, 4-hydroxysphinganine, hexadecasphinganine, and other sphingolipids showed post-treatment abundance similar to that in non-infected controls. CONCLUSIONS These molecules hold promise as potentially useful biomarkers for monitoring disease progression and treatment response in patients with chronic T. cruzi infection.
Collapse
Affiliation(s)
- Juan Carlos Gabaldón-Figueira
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain.
| | - Albert Ros-Lucas
- ISGlobal, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Nieves Martínez-Peinado
- ISGlobal, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gavin Blackburn
- MVLS Shared Research Facilities, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Irene Losada-Galvan
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | | | - Cristina Ballart
- ISGlobal, Barcelona, Spain
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
| | | | - Jordi Capellades
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Yanes
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Rio de Janeiro, Brazil
| | - Joaquim Gascón
- ISGlobal, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Julio Alonso-Padilla
- ISGlobal, Barcelona, Spain.
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain.
| |
Collapse
|
2
|
Hameed H, Khan MA, Paiva-Santos AC, Faheem S, Khalid A, Majid MS, Adnan A, Rana F. Liposomes like advanced drug carriers: from fundamentals to pharmaceutical applications. J Microencapsul 2024; 41:456-478. [PMID: 38990129 DOI: 10.1080/02652048.2024.2376116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
AIMS There are around 24 distinct lipid vesicles described in the literature that are similar to vesicular systems such as liposomes. Liposome-like structures are formed by combining certain amphiphilic lipids with a suitable stabiliser. Since their discovery and classification, self-assembled liposome-like structures as active drug delivery vehicles captured researchers' curiosity. METHODOLOGY This comprehensive study included an in-depth literature search using electronic databases such as PubMed, ScienceDirect and Google Scholar, focusing on studies on liposome and liposomes like structure, discussed in literature till 2024, their sizes, benefits, drawback, method of preparation, characterisation and pharmaceutical applications. RESULTS Pharmacosomes, cubosomes, ethosomes, transethosomes, and genosomes, all liposome-like structures, have the most potential due to their smaller size with high loading capacity, ease of absorption, and ability to treat inflammatory illnesses. Genosomes are futuristic because of its affinity for DNA/gene transport, which is an area of focus in today's treatments. CONCLUSION This review will critically analyse the composition, preparation procedures, drug encapsulating technologies, drug loading, release mechanism, and related applications of all liposome-like structures, highlighting their potential benefits with enhanced efficacy over each other and over traditional carriers by paving the way for exploring novel drug delivery systems in the Pharma industry.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Aleena Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Aiman Adnan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Fizza Rana
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Tian Y, Liu X, Wang J, Zhang C, Yang W. Antitumor Effects and the Potential Mechanism of 10-HDA against SU-DHL-2 Cells. Pharmaceuticals (Basel) 2024; 17:1088. [PMID: 39204193 PMCID: PMC11357620 DOI: 10.3390/ph17081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects on numerous tumor cell lines, including colon cancer cells, A549 human lung cancer cells, and human hepatoma cells. The present study extends this inquiry to lymphoma, specifically evaluating the impact of 10-HDA on the SU-DHL-2 cell line. Our findings revealed dose-dependent suppression of SU-DHL-2 cell survival, with an IC50 of 496.8 μg/mL at a density of 3 × 106 cells/well after 24 h. For normal liver LO2 cells and human fibroblasts (HSFs), the IC50 values were approximately 1000 μg/mL and over 1000 μg/mL, respectively. The results of label-free proteomics revealed 147 upregulated and 347 downregulated differentially expressed proteins that were significantly enriched in the complement and coagulation cascades pathway (adjusted p-value = 0.012), including the differentially expressed proteins prothrombin, plasminogen, plasminogen, carboxypeptidase B2, fibrinogen beta chain, fibrinogen gamma chain, and coagulation factor V. The top three hub proteins, ribosomal protein L5, tumor protein p53, and ribosomal protein L24, were identified via protein-protein interaction (PPI) analysis. This result showed that the complement and coagulation cascade pathways might play a key role in the antitumor process of 10-HDA, suggesting a potential therapeutic avenue for lymphoma treatment. However, the specificity of the effect of 10-HDA on SU-DHL-2 cells warrants further investigation.
Collapse
Affiliation(s)
- Yuanyuan Tian
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqing Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Jie Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Chuang Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Wenchao Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| |
Collapse
|
4
|
Atef B, Ishak RAH, Badawy SS, Osman R. Novel composite fatty acid vesicles-in-Pluronic lecithin organogels for enhanced magnolol delivery in skin cancer treatment. Eur J Pharm Biopharm 2024; 201:114379. [PMID: 38908488 DOI: 10.1016/j.ejpb.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
A novel composite carrier composed of Pluronic lecithin organogels and fatty acid vesicles was used to enhance the stability and facilitate the topical delivery of a natural bioactive drug, magnolol (Mag), for treatment of skin cancer. Jojoba oil was incorporated in the organogel (OG) base to provide a synergistic effect in treatment of skin cancer. The organoleptic properties, rheological behavior, morphology, and drug content of the OG formulations were investigated with emphasis on the impact of vesicle loading on the OG characteristics. The effect of OG on Mag release and ex-vivo permeation studies were evaluated and compared to free Mag in OG. The biological anti-tumor activity of the OG formulae was assessed using a skin cancer model in mice. All OG formulations exhibited uniform drug distribution with drug content ranging from 92.22 ± 0.91 to 100.45 ± 0.77 %. Rheological studies confirmed the OG shear-thinning flow behavior. Ex-vivo permeation studies demonstrated that the permeation of Mag from all OG formulations surpassed that obtained with free Mag in the OG. The anti-tumor activity studies revealed the superior efficacy of 10-hydroxy-decanoic acid (HDA)-based vesicles incorporated in OG formulations in mitigating 7,12- dimethylbenz(a)anthracene (DMBA)-induced skin cancer, thereby offering a promising platform for the local delivery of Mag.
Collapse
Affiliation(s)
- Bassant Atef
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Sabry S Badawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
5
|
Zhao Y, Wang C, Zou B, Fu L, Ren S, Zhang X. Design and Evaluation of Tretinoin Fatty Acid Vesicles for the Topical Treatment of Psoriasis. Molecules 2023; 28:7868. [PMID: 38067597 PMCID: PMC10708007 DOI: 10.3390/molecules28237868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The goal of the current study was to explore the potential benefits of Tretinoin (Tre) fatty acid vesicles (Tre-FAV) as a prospective antipsoriatic topical delivery system. This promising system can counteract the drug challenges in terms of its extremely low aqueous solubility, instability, skin irritation, and serious systemic adverse effects. Tre-loaded fatty acid vesicles were successfully developed and entirely characterised. The selected formulation was investigated for in vitro release, ex vivo skin retention and psoriasis efficacy studies. The characterisation results of Tre-FAV showed it has a globular shape with a particle size of 126.37 ± 1.290 nm (0.188 ± 0.019 PDI). The entrapment efficiency and zeta potential were discovered to be 84.26 ± 0.816% and -28.9 ± 1.92 mV, respectively. Encapsulation of the drug in the fatty acid vesicles was also strengthened by differential scanning calorimetric and powder FTIR diffraction studies. In vitro release results showed that Tre-FAV significantly increased skin absorption and retention in comparison to the Tre solution. The topical application of Tre-FAV to a mouse model confirmed that it has superior in vivo antipsoriatic properties in terms of well-demarcated papules, erythema and reduced epidermal thickness in comparison to other treatments. The weight of the spleen and the levels of the cytokines IL-17 and IL-6 decreased after treatment. In conclusion, FAV dramatically increased the water solubility and skin permeability of Tre and its anti-psoriasis activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Z.); (C.W.); (B.Z.); (L.F.); (S.R.)
| |
Collapse
|