1
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
2
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
3
|
Yue H, Zhao D, Tegafaw T, Ahmad MY, Saidi AKAA, Liu Y, Cha H, Yang BW, Chae KS, Nam SW, Chang Y, Lee GH. Core-Shell Fe 3O 4@C Nanoparticles as Highly Effective T 2 Magnetic Resonance Imaging Contrast Agents: In Vitro and In Vivo Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:177. [PMID: 38251140 PMCID: PMC10819740 DOI: 10.3390/nano14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Magnetite nanoparticles (Fe3O4 NPs) have been intensively investigated because of their potential biomedical applications due to their high saturation magnetization. In this study, core-shell Fe3O4@C NPs (core = Fe3O4 NPs and shell = amorphous carbons, davg = 35.1 nm) were synthesized in an aqueous solution. Carbon coating terminated with hydrophilic -OH and -COOH groups imparted excellent biocompatibility and hydrophilicity to the NPs, making them suitable for biomedical applications. The Fe3O4@C NPs exhibited ideal relaxometric properties for T2 magnetic resonance imaging (MRI) contrast agents (i.e., high transverse and negligible longitudinal water proton spin relaxivities), making them exclusively induce only T2 relaxation. Their T2 MRI performance as contrast agents was confirmed in vivo by measuring T2 MR images in mice before and after intravenous injection.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Hyunsil Cha
- Division of Biomedical Science, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Byeong Woo Yang
- Theranocure, Medlifescience Bldg. 1, Chilgok, Bukgu, Taegu 41405, Republic of Korea;
| | - Kwon Seok Chae
- Department of Biology Education, Teachers’ College, Kyungpook National University, Taegu 41566, Republic of Korea;
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| |
Collapse
|
4
|
Agista WP, Subadra SUI, Taufiq A, Hidayat A, Handoko E, Alaydrus M, Amrillah T, Jeerapan I. Exploring the role of Mn 2+ in the structure, magnetic properties, and radar absorption performance of Mn xFe 3-xO 4-DEA/MWCNT nanocomposites. RSC Adv 2023; 13:29332-29341. [PMID: 37818268 PMCID: PMC10560876 DOI: 10.1039/d3ra05333d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Iron oxide/carbon-based nanocomposites are known as an ideal combination of magnetic-conductive materials that were recently developed in radar absorption application; one example is the Fe3O4/multiwalled carbon nanotubes (MWCNTs). In this study, we try to boost their radar absorption ability by Mn-ion doping. Mn is an appropriate Fe substitute that is predicted to alter the magnetic properties and enhance the conductivity, which are crucial to developing their radar absorption properties. Diethylamine (DEA) is also used as a capping agent to improve the size and shape of the nanocomposite. In this study, a MnxFe3-xO4-DEA/MWCNT nanocomposite is successfully prepared by the coprecipitation method using a variation of x = 0, 0.25, 0.5, 0.75, and 1. We found that the sample's magnetic saturation (Ms) decreases, while the reflection loss (RL) increases with increasing the molar fraction of Mn. The enhancement of the radar wave absorption in the sample is dominated by dielectric losses due to the increase of electrical conductivity and interfacial polarization with the addition of Mn in the nanocomposites. We believe that our finding could shed light on the role of doping elements to develop the radar absorption properties, and further pave the way for the real implementation of iron oxides/graphene-based nanocomposite as radar-absorbing materials (RAMs).
Collapse
Affiliation(s)
- Wida Puteri Agista
- Department of Physics, Faculty of Mathematics and Natural Science, State University of Malang Jl. Semarang 5 Malang 65145 Indonesia
| | - St Ulfawanti Intan Subadra
- Department of Physics, Faculty of Mathematics and Natural Science, State University of Malang Jl. Semarang 5 Malang 65145 Indonesia
| | - Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Science, State University of Malang Jl. Semarang 5 Malang 65145 Indonesia
| | - Arif Hidayat
- Department of Physics, Faculty of Mathematics and Natural Science, State University of Malang Jl. Semarang 5 Malang 65145 Indonesia
| | - Erfan Handoko
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta Jl. Rawamangun Muka 1 Jakarta 13220 Indonesia
| | - Mudrik Alaydrus
- Department of Electrical Engineering, Universitas Mercu Buana Jl. Meruya Selatan 1 Jakarta 11650 Indonesia
| | - Tahta Amrillah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Jl. Ir. Sukarno 1 Surabaya 60115 Indonesia
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
5
|
Gao Z, Mansor MH, Winder N, Demiral S, Maclnnes J, Zhao X, Muthana M. Microfluidic-Assisted ZIF-Silk-Polydopamine Nanoparticles as Promising Drug Carriers for Breast Cancer Therapy. Pharmaceutics 2023; 15:1811. [PMID: 37513998 PMCID: PMC10384305 DOI: 10.3390/pharmaceutics15071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Metal-organic frameworks (MOFs) are heralded as potential nanoplatforms for biomedical applications. Zeolitic imidazolate framework-8 (ZIF-8), as one of the most well known MOFs, has been widely applied as a drug delivery carrier for cancer therapy. However, the application of ZIF-8 nanoparticles as a therapeutic agent has been hindered by the challenge of how to control the release behaviour of anti-cancer zinc ions to cancer cells. In this paper, we designed microfluidic-assisted core-shell ZIF-8 nanoparticles modified with silk fibroin (SF) and polydopamine (PDA) for sustained release of zinc ions and curcumin (CUR) and tested these in vitro in various human breast cancer cells. We report that microfluidic rapid mixing is an efficient method to precisely control the proportion of ZIF-8, SF, PDA, and CUR in the nanoparticles by simply adjusting total flow rates (from 1 to 50 mL/min) and flow rate ratios. Owing to sufficient and rapid mixing during microfluidic-assisted nanoprecipitation, our designer CUR@ZIF-SF-PDA nanoparticles had a desired particle size of 170 nm with a narrow size distribution (PDI: 0.08), which is much smaller than nanoparticles produced using traditional magnetic stirrer mixing method (over 1000 nm). Moreover, a properly coated SF layer successfully enhanced the capability of ZIF-8 as a reservoir of zinc ions. Meanwhile, the self-etching reaction between ZIF-8 and PDA naturally induced a pH-responsive release of zinc ions and CUR to a therapeutic level in the MDA-MB-231, SK-BR-3, and MCF-7 breast cancer cell lines, resulting in a high cellular uptake efficiency, cytotoxicity, and cell cycle arrest. More importantly, the high biocompatibility of designed CUR@ZIF-SF-PDA nanoparticles remained low in cytotoxicity on AD-293 non-cancer cells. We demonstrate the potential of prepared CUR@ZIF-SF-PDA nanoparticles as promising carriers for the controlled release of CUR and zinc ions in breast cancer therapy.
Collapse
Affiliation(s)
- Zijian Gao
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Muhamad Hawari Mansor
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Natalie Winder
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Secil Demiral
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jordan Maclnnes
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
6
|
Jiang P, Liang B, Zhang Z, Fan B, Zeng L, Zhou Z, Mao Z, Xu Q, Yao W, Shen Q. New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment. RSC Adv 2023; 13:19540-19564. [PMID: 37388143 PMCID: PMC10300523 DOI: 10.1039/d3ra03099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Lung cancer is caused by a malignant tumor that shows the fastest growth in both incidence and mortality and is also the greatest threat to human health and life. At present, both in terms of incidence and mortality, lung cancer is the first in male malignant tumors, and the second in female malignant tumors. In the past two decades, research and development of antitumor drugs worldwide have been booming, and a large number of innovative drugs have entered clinical trials and practice. In the era of precision medicine, the concept and strategy of cancer from diagnosis to treatment are experiencing unprecedented changes. The ability of tumor diagnosis and treatment has rapidly improved, the discovery rate and cure rate of early tumors have greatly improved, and the overall survival of patients has benefited significantly, with a tendency to transform to a chronic disease with tumor. The emergence of nanotechnology brings new horizons for tumor diagnosis and treatment. Nanomaterials with good biocompatibility have played an important role in tumor imaging, diagnosis, drug delivery, controlled drug release, etc. This article mainly reviews the advancements in lipid-based nanosystems, polymer-based nanosystems, and inorganic nanosystems in the diagnosis and treatment of non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Piao Jiang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- The First Clinical Medical College, Nanchang University Nanchang China
| | - Bin Liang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| |
Collapse
|