1
|
Eldin MH, Arafa KK, Gamal O, Keshk S, El-Sherbiny IM. Inhalable pH-responsive core-shell nanocarriers with PEGylated chitosan/alginate layer-by-layer coating for sequential drug release in lung cancer therapy. Int J Biol Macromol 2025; 307:141851. [PMID: 40058440 DOI: 10.1016/j.ijbiomac.2025.141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Lung cancer remains one of the most lethal malignancies globally, underscoring the dire need for effective therapy. Scheduled administration of gemcitabine (GMC) followed by docetaxel (DTX) is clinically employed. Yet, the detrimental systemic toxicity and pharmacokinetic inadequacies such as the short plasma half-life of the former and poor bioavailability of the latter limit their use. Herein, we report the development of a novel inhalable nanocarrier system (NC) to enable the sequential release of drugs as per the clinical protocol. The developed NC has core-shell structure, with aminated mesoporous silica (MSNs) homing DTX at the core; enclosed within the polyanionic alginate (Alg) to prevent premature DTX release and serve as an intermediary sellotape layer. The outermost shell is polycationic as-synthesized PEGylated-chitosan (PEG-CS) loaded with GMC, to ensure stealth characteristics and prompt release of GMC. The newly developed PEG-CS/Alg@MSNs core-shell nanocarriers were comprehensively characterized. Besides it was evaluated in-vitro on A549 cell line and its in-vivo biodistribution was determined using jet nebulizer. Physicochemical analysis confirmed spherical core-shell NCs, 150 nm in size with +32 ± 1.5 mV surface charge. Drug entrapment efficiency was 75.2 ± 2.1 % for DTX and 32.5 ± 6.5 % for GMC, with sequential release in physiological conditions. Next Generation Impactor (NGI) experiments showed effective lung deposition with favorable aerosolization behavior. In-vitro assays on A549 cells revealed enhanced lung cancer treatment. In-vivo biodistribution confirmed lung accumulation, and histopathology indicated safety of NC. Conclusively, inhalable targeted NCs deem promising for lung cancer treatment.
Collapse
Affiliation(s)
- Mariam Hossam Eldin
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Kholoud K Arafa
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Osman Gamal
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Sarah Keshk
- Center of Genomics, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt.
| |
Collapse
|
2
|
Silva CG, Luz VF, Nunes VL, Verzoto ABM, Cotrim ACDM, dos Santos WB, França EL, Honorio-França AC. Colostrum-Derived Melatonin Plus PEG Microspheres Modulate the Oxidative Metabolism of Human Colostrum Phagocytes. Metabolites 2025; 15:57. [PMID: 39852399 PMCID: PMC11767932 DOI: 10.3390/metabo15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Exogenous melatonin adsorbed onto PEG microspheres can modulate the functional activity of phagocytes in colostrum, but no data are available on the activity of melatonin found in colostrum. Therefore, the objective of this study was to extract melatonin from human colostrum, develop and characterize PEG microspheres with the extracted melatonin adsorbed onto them, and evaluate the effects of this system on the oxidative metabolism of colostrum phagocytes. METHODS Thirty colostrum samples were collected; ten were used for melatonin extraction, while twenty were used to obtain phagocytes. Melatonin was extracted from the colostrum supernatant through affinity chromatography and quantified by ELISA. The polyethylene glycol microspheres produced were analyzed using fluorescence microscopy and flow cytometry. Oxidative metabolism was assessed by measuring the release of the superoxide anion and superoxide enzymes. A control was conducted using commercial melatonin. RESULTS The fluorescence microscopy and flow cytometry analyses demonstrated that PEG microspheres can adsorb melatonin. There was an increase in superoxide release in phagocytes incubated with colostrum-derived or synthetic melatonin. When exposed to bacteria, colostrum phagocytes treated with colostrum melatonin adsorbed to PEG microspheres exhibited increased superoxide, accompanied by a decrease in the release of superoxide dismutase (SOD) and a lower SOD-to-superoxide ratio. In contrast, synthetic melatonin reduced the release of superoxide and increased the release of the enzyme and the SOD-to-superoxide ratio. CONCLUSIONS These data highlight the importance of melatonin on cellular metabolism and suggest that colostrum-derived melatonin may be a more effective option for controlling oxidative metabolism, particularly during infectious processes.
Collapse
Affiliation(s)
- Caroline G. Silva
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Viviane F. Luz
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Victor L. Nunes
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| | - Ana B. M. Verzoto
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| | - Aron C. de M. Cotrim
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Wagner B. dos Santos
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Eduardo L. França
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| | - Adenilda C. Honorio-França
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| |
Collapse
|
3
|
Mahmoud TM, Abdelfatah MM, Omar MM, Hasan OA, Wali SM, El-Mofty MS, Ewees MG, Salem AE, Abd-El-Galil TI, Mahmoud DM. Enhancing the Therapeutic Effect and Bioavailability of Irradiated Silver Nanoparticle-Capped Chitosan-Coated Rosuvastatin Calcium Nanovesicles for the Treatment of Liver Cancer. Pharmaceutics 2025; 17:72. [PMID: 39861720 PMCID: PMC11769262 DOI: 10.3390/pharmaceutics17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 23-factorial design, eight formulations were produced using the solvent evaporation process. The formulations were characterized in vitro to identify the optimal formulation (Nop). The FTIR spectra showed that the fingerprint region is not superimposed with that of the drug; DSC thermal analysis depicted a negligible peak shift; and XRPD diffractograms revealed the disappearance of the typical drug peaks. Nop had an entrapment efficiency percent (EE%) of 86.2%, a polydispersity index (PDI) of 0.254, a zeta potential (ZP) of -35.3 mV, and a drug release after 12 h (Q12) of 55.6%. The chitosan-coated optimized formulation (CS.Nop) showed significant mucoadhesive strength that was 1.7-fold greater than Nop. Physical stability analysis of CS.Nop revealed negligible alterations in VS, ZP, PDI, and drug retention (DR) at 4 °C. The irradiated chitosan-coated optimized formulation capped with silver nanoparticles (INops) revealed the highest inhibition effect on carcinoma cells (97.12%) compared to the chitosan-coated optimized formulation (CS.Nop; 81.64) and chitosan-coated optimized formulation capped with silver nanoparticles (CS.Nop.AgNPs; 92.41). The bioavailability of CS-Nop was 4.95-fold greater than RC, with a residence time of about twice the free drug. CS.Nop has displayed a strong in vitro-in vivo correlation with R2 0.9887. The authors could propose that novel INop could serve as an advanced platform to improve oral bioavailability and enhance hepatic carcinoma recovery.
Collapse
Affiliation(s)
- Tamer Mohamed Mahmoud
- Pharmaceutics and Industrial Pharmacy Department, Al-Manara College for Medical Sciences, Maysan 62010, Iraq;
| | | | - Mahmoud Mohamed Omar
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Saad M. Wali
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed S. El-Mofty
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Ain Shams University, Cairo 11566, Egypt;
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Nahda University, Beni-Suef 62764, Egypt
| | - Mohamed G. Ewees
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt;
- Department of Pharmacology and Toxicology, College of Pharmacy, Almaaqal University, Basrah 61014, Iraq
| | - Amel E. Salem
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | | | - Dina Mohamed Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt;
| |
Collapse
|
4
|
Panjwani D, Patel A, Mishra D, Patel S, Patel V, Ram Yadav M, Singh B. Green RP-HPLC method for the estimation of carfilzomib in bulk, protein nanocarriers and human plasma: Application of chemometrics and Monte-Carlo simulations. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1249:124350. [PMID: 39561466 DOI: 10.1016/j.jchromb.2024.124350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Carfilzomib is a tetrapeptide epoxyketone that has shown potential clinical outcomes in the treatment of multiple myeloma. However, inaccuracies in quantifying such peptide drug products have arisen due to poor stability, low solubility, time-consuming techniques, complex physicochemical properties, and use of non-green solvents with less recyclability. This provides a substantial urge to develop an ecological and sensitive analytical method for quantifying peptide drugs from matrix formulation and biological samples in early as well as lateral stages of product development in pharma industries. As a result, the study aimed to develop a robust ecological method for estimation of carfilzomib via Green RP-HPLC using analytical quality by design (AQbD) paradigms with specific application in protein nanoparticles and biological matrix. Initially, an appropriate wavelength for quantification of carfilzomib was chosen using principal component analysis (PCA) as a chemometric tool.Risk assessment followed by factor screening studies using 8-factor Placket-Burman Design aided in earmarking critical method parameters (CMPs) affecting critical analytical attributes (CAAs). Further, Central Composite Design (CCD) was employed for design space optimisation to demarcate optimum chromatographic conditions, which were corroborated for robustness using Monte-Carlo simulations. The method was validated as per ICH Q2 (R2), followed by quantifying the greenness of the method using Green Assessment tools. The method optimisation resulted in the optimal chromatographic conditions using Green RP-HPLC. The chromatographic system was equipped with a Phenomenex Aeris Peptide-XC C18 column (150 × 4.6 mm × 5 µm), and the mobile phase was composed of isopropanol:methanol:0.1 M PBS (pH 5.5 adjusted using 0.1 % formic acid) (35:45:20v/v), with a 1 ml/min flow rate at a 210 nm ʎmax. The optimised chromatographic conditions resulted in a short retention time (RT) of 4.95 mins, 0.87 tailing factor (TF), 4,875,122 peak area (PA), and 8995 theoretical plate count (TPC). The method demonstrated linearity in a wide range of concentrations (0.1-20 µg/ml) with a correlational coefficient of 0.997 and < 2 % RSD. The method unearthed a high precision rate with more than 95 % of drug recovery in protein nanoparticles and human plasma, thereby confirming the accuracy and sensitivity of the developed method. Chemometrics and Monte-Carlo simulations ratified the robustness and sensitivity of the developed analytical method of Carfilzomib with established greenness and a high degree of practical utility in protein-based nano formulations and human plasma matrix for life cycle product development.
Collapse
Affiliation(s)
- Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India 391760
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India 391760
| | - Deepak Mishra
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India 391760
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India 391760
| | - Viral Patel
- Department of Civil and Petroleum Engineering, University of Alberta, Canada
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, Gujarat, India 391760
| | | |
Collapse
|
5
|
Zhang K, Zhou T, Dicko C, Ye L, Bülow L. Preparation and Utilization of a Highly Discriminative Absorbent Imprinted with Fetal Hemoglobin. Polymers (Basel) 2024; 16:2734. [PMID: 39408446 PMCID: PMC11479342 DOI: 10.3390/polym16192734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Development in hemoglobin-based oxygen carriers (HBOCs) that may be used as alternatives to donated blood requires an extensive supply of highly pure hemoglobin (Hb) preparations. Therefore, it is essential to fabricate inexpensive, stable and highly selective absorbents for Hb purification. Molecular imprinting is an attractive technology for preparing such materials for targeted molecular recognition and rapid separations. In this case study, we developed human fetal hemoglobin (HbF)-imprinted polymer beads through the fusion of surface imprinting and Pickering emulsion polymerization. HbF was firstly covalently coupled to silica nanoparticles through its surface-exposed amino groups. The particle-supported HbF molecules were subsequently employed as templates for the synthesis of molecularly imprinted polymers (MIPs) with high selectivity for Hb. After removing the silica support and HbF, the resulting MIPs underwent equilibrium and kinetic binding experiments with both adult Hb (HbA) and HbF. These surface-imprinted MIPs exhibited excellent selectivity for both HbA and HbF, facilitating the one-step isolation of recombinant Hb from crude biological samples. The saturation capacities of HbA and HbF were found to be 15.4 and 17.1 mg/g polymer, respectively. The present study opens new possibilities for designed resins for tailored protein purification, separation and analysis.
Collapse
Affiliation(s)
| | | | | | | | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden; (K.Z.); (T.Z.); (C.D.); (L.Y.)
| |
Collapse
|
6
|
Qureshi M, Viegas C, Duarte SOD, Girardi M, Shehzad A, Fonte P. Camptothecin-loaded mesoporous silica nanoparticles functionalized with CpG oligodeoxynucleotide as a new approach for skin cancer treatment. Int J Pharm 2024; 660:124340. [PMID: 38878838 DOI: 10.1016/j.ijpharm.2024.124340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
The therapeutic efficacy of camptothecin (CPT), a potent antitumor alkaloid, is hindered by its hydrophobic nature and instability, limiting its clinical use in treating cutaneous squamous cell carcinoma (SCC). This study introduces a novel nano drug delivery system (NDDS) utilizing functionalized mesoporous silica nanoparticles (FMSNs) for efficient CPT delivery. The FMSNs were loaded with CPT and subsequently coated with chitosan (CS) for enhanced stability and bioadhesion. Importantly, CpG oligodeoxynucleotide (CpG ODN) was attached onto the CS-coated FMSNs to leverage the immunostimulatory properties of CpG ODN, augmenting the chemotherapy's efficacy. The final formulation FMSN-CPT-CS-CpG displayed an average size of 241 nm and PDI of 0.316 with an encapsulation efficiency of 95 %. Comprehensive in vitro and in vivo analyses, including B16F10 cells and DMBA/TPA-induced SCC murine model, demonstrated that the FMSN-CPT-CS-CpG formulation significantly enhanced cytotoxicity against B16F10 cells and induced complete regression in 40 % of the in vivo subjects, surpassing the efficacy of standard CPT and FMSN-CPT treatments. This study highlights the potential of combining chemotherapeutic and immunotherapeutic agents in an NDDS for targeted, efficient skin cancer treatment.
Collapse
Affiliation(s)
- Munibah Qureshi
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan
| | - Cláudia Viegas
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal; Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Sofia O D Duarte
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Michael Girardi
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan.
| | - Pedro Fonte
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Jin H, Lu W, Zhang Y, Wu Y, Ding J, Orion IRCV, Liu C. Functionalized Periodic Mesoporous Silica Nanoparticles for Inhibiting the Progression of Atherosclerosis by Targeting Low-Density Lipoprotein Cholesterol. Pharmaceutics 2024; 16:74. [PMID: 38258085 PMCID: PMC10821319 DOI: 10.3390/pharmaceutics16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Atherosclerotic disease is a substantial global burden, and existing treatments, such as statins, are recommended to lower low-density lipoprotein cholesterol (LDL-C) levels and inhibit the progression of atherosclerosis. However, side effects, including gastrointestinal unease, potential harm to the liver, and discomfort in the muscles, might be observed. In this study, we propose a novel method using periodic mesoporous silica nanoparticles (PMS) to create heparin-modified PMS (PMS-HP) with excellent biocompatibility, enabling selective removal of LDL-C from the blood. In vitro, through the introduction of PMS-HP into the plasma of mice, we observed that, compared to PMS alone, PMS-HP could selectively adsorb LDL-C while avoiding interference with valuable components such as plasma proteins and high-density lipoprotein cholesterol (HDL-C). Notably, further investigations revealed that the adsorption of LDL-C by PMS-HP could be well-fitted to quasi-first-order (R2 = 0.993) and quasi-second-order adsorption models (R2 = 0.998). Likewise, in vivo, intravenous injection of PMS-HP enabled targeted LDL-C adsorption (6.5 ± 0.73 vs. 8.6 ± 0.76 mM, p < 0.001) without affecting other plasma constituents, contributing to reducing intravascular plaque formation (3.66% ± 1.06% vs. 1.87% ± 0.79%, p < 0.05) on the aortic wall and inhibiting vascular remodeling (27.2% ± 6.55% vs. 38.3% ± 1.99%, p < 0.05). Compared to existing lipid adsorption techniques, PMS-HP exhibited superior biocompatibility and recyclability, rendering it valuable for both in vivo and in vitro applications.
Collapse
Affiliation(s)
- Hao Jin
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Wenbin Lu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Yahao Zhang
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Yong Wu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Jiandong Ding
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - I. R. Chiara Villamil Orion
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing 210009, China; (H.J.); (Y.Z.); (Y.W.); (I.R.C.V.O.)
| | - Cihui Liu
- Department of Biomedical Sciences, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
8
|
Sokol MB, Sokhraneva VA, Groza NV, Mollaeva MR, Yabbarov NG, Chirkina MV, Trufanova AA, Popenko VI, Nikolskaya ED. Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential. Polymers (Basel) 2023; 16:72. [PMID: 38201737 PMCID: PMC10781094 DOI: 10.3390/polym16010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Unsaturated fatty acids, such as oleic acid (OA) and linoleic acid (LA), are promising antimicrobial and cytostatic agents. We modified OA and LA with thymol (TOA and TLA, respectively) to expand their bioavailability, stability, and possible applications, and encapsulated these derivatives in polymeric nanoparticles (TOA-NPs and TLA-NPs, respectively). Prior to synthesis, we performed mathematical simulations with PASS and ADMETlab 2.0 to predict the biological activity and pharmacokinetics of TOA and TLA. TOA and TLA were synthesized via esterification in the presence of catalysts. Next, we formulated nanoparticles using the single-emulsion solvent evaporation technique. We applied dynamic light scattering, Uv-vis spectroscopy, release studies under gastrointestinal (pH 1.2-6.8) and blood environment simulation conditions (pH 7.4), and in vitro biological activity testing to characterize the nanoparticles. PASS revealed that TOA and TLA have antimicrobial and anticancer therapeutic potential. ADMETlab 2.0 provided a rationale for TOA and TLA encapsulation. The nanoparticles had an average size of 212-227 nm, with a high encapsulation efficiency (71-93%), and released TOA and TLA in a gradual and prolonged mode. TLA-NPs possessed higher antibacterial activity against B. cereus and S. aureus and pronounced cytotoxic activity against MCF-7, K562, and A549 cell lines compared to TOA-NPs. Our findings expand the biomedical application of fatty acids and provide a basis for further in vivo evaluation of designed derivatives and formulations.
Collapse
Affiliation(s)
- Maria B. Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vera A. Sokhraneva
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Nataliya V. Groza
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
| | - Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Nikita G. Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Margarita V. Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Anna A. Trufanova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Elena D. Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| |
Collapse
|