1
|
Alenezi SK. CAR T cells in lung cancer: Targeting tumor-associated antigens to revolutionize immunotherapy. Pathol Res Pract 2025; 269:155947. [PMID: 40168775 DOI: 10.1016/j.prp.2025.155947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Tumor-targeted T cells engineered for targeting and killing tumor cells have revolutionized cancer treatment, specifically in hematologic malignancies, through chimeric antigen receptor (CAR) T cell therapy. However, the migration of this success to lung cancer is challenging due to the tumor microenvironment (TME), antigen heterogeneity, and limitations of T cell infiltration. This review aims to evaluate current strategies addressing these barriers, focusing on the optimization of tumor-associated antigen (TAA) targeting, such as epidermal growth factor receptor (EGFR), mucin-1 (MUC1), and mesothelin (MSLN), which are frequently overexpressed in lung cancer and offer promising targets for CAR T-cell therapy. In this review, we discuss recent progress in CAR T cell engineering, applying enhanced costimulatory molecules, cytokine-secreting CAR T cells, and engineered modifications to improve T cell resilience in immunosuppressive environments. Additionally, this review also evaluates combination therapies of immune checkpoint inhibitors and recently published clinical trials on lung cancer with CAR T cells. We offer insights into the way to optimize CAR T cell therapy for lung cancer by analyzing antigen selection, immune evasion, and the strategies to enhance T cell persistence and tumor infiltration.
Collapse
Affiliation(s)
- Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia.
| |
Collapse
|
2
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
3
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Craft K, Amanor A, Barnett I, Donaldson C, Anegon I, Madduri S, Tang Q, Bility MT. Can Humanized Immune System Mouse and Rat Models Accelerate the Development of Cytomegalovirus-Based Vaccines Against Infectious Diseases and Cancers? Int J Mol Sci 2025; 26:3082. [PMID: 40243710 PMCID: PMC11988357 DOI: 10.3390/ijms26073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Over the past three decades, immunodeficient mouse models carrying human immune cells, with or without human lymphoid tissues, termed humanized immune system (HIS) rodent models, have been developed to recapitulate the human immune system and associated immune responses. HIS mouse models have successfully modeled many human-restricted viral infections, including those caused by human cytomegalovirus (HCMV) and human immunodeficiency virus (HIV). HIS mouse models have also been used to model human cancer immunobiology, which exhibits differences from murine cancers in traditional mouse models. Variants of HIS mouse models that carry human liver cells, lung tissue, skin tissue, or human patient-derived tumor xenografts and human hematopoietic stem cells-derived-human immune cells with or without lymphoid tissue xenografts have been developed to probe human immune responses to infections and human tumors. HCMV-based vaccines are human-restricted, which poses limitations for mechanistic and efficacy studies using traditional animal models. The HCMV-based vaccine approach is a promising vaccine strategy as it induces robust effector memory T cell responses that may be critical in preventing and rapidly controlling persistent viral infections and cancers. Here, we review novel HIS mouse models with robust human immune cell development and primary and secondary lymphoid tissues that could address many of the limitations of HIS mice in their use as animal models for HCMV-based vaccine research. We also reviewed novel HIS rat models, which could allow long-term (greater than one year) vaccinology studies and better recapitulate human pathophysiology. Translating laboratory research findings to clinical application is a significant bottleneck in vaccine development; HIS rodents and related variants that more accurately model human immunology and diseases could increase the translatability of research findings.
Collapse
Affiliation(s)
- Kaci Craft
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Athina Amanor
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ian Barnett
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Clarke Donaldson
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ignacio Anegon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France;
| | - Srinivas Madduri
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1211 Geneva, Switzerland;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Moses T. Bility
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| |
Collapse
|
5
|
Testa M, Gaggianesi M, D’Accardo C, Porcelli G, Turdo A, Di Marco C, Patella B, Di Franco S, Modica C, Di Bella S, Lopresti F, Stassi G, La Carrubba V, Todaro M. A Novel Tumor on Chip Mimicking the Breast Cancer Microenvironment for Dynamic Drug Screening. Int J Mol Sci 2025; 26:1028. [PMID: 39940796 PMCID: PMC11816644 DOI: 10.3390/ijms26031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
In light of the emerging breakthroughs in cancer biology, drug discovery, and personalized medicine, Tumor-on-Chip (ToC) platforms have become pivotal tools in current biomedical research. This study introduced a novel rapid prototyping approach for the fabrication of a ToC device using laser-patterned poly(methyl methacrylate) (PMMA) layers integrated with a polylactic acid (PLA) electrospun scaffold, enabling dynamic drug delivery and the assessment of therapeutic efficacy in cancer cells. Traditional drug screening methods, such as conventional cell cultures, mimic certain aspects of cancer progression but fail to capture critical features of the tumor microenvironment (TME). While animal models offer a closer approximation of tumor complexity, they are limited in their ability to predict human drug responses. Here, we evaluated the ability of our ToC device to recapitulate the interactions between cancer and TME cells and its efficacy in evaluating the drug response of breast cancer cells. The functional design of the proposed ToC system offered substantial potential for a wide range of applications in cancer research, significantly accelerating the preclinical assessment of new therapeutic agents.
Collapse
Affiliation(s)
- Maria Testa
- Department of Biomedicina, Neuroscienze e Diagnostica avanzata (Bind), University of Palermo, 90127 Palermo, Italy;
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (C.D.M.); (B.P.); (V.L.C.)
| | - Miriam Gaggianesi
- Department of Precision Medicine in Medical, Surgical, and Critical Areas (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.D.); (G.P.); (S.D.F.); (C.M.); (S.D.B.)
| | - Caterina D’Accardo
- Department of Precision Medicine in Medical, Surgical, and Critical Areas (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.D.); (G.P.); (S.D.F.); (C.M.); (S.D.B.)
| | - Gaetana Porcelli
- Department of Precision Medicine in Medical, Surgical, and Critical Areas (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.D.); (G.P.); (S.D.F.); (C.M.); (S.D.B.)
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.T.); (M.T.)
| | - Chiara Di Marco
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (C.D.M.); (B.P.); (V.L.C.)
| | - Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (C.D.M.); (B.P.); (V.L.C.)
| | - Simone Di Franco
- Department of Precision Medicine in Medical, Surgical, and Critical Areas (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.D.); (G.P.); (S.D.F.); (C.M.); (S.D.B.)
| | - Chiara Modica
- Department of Precision Medicine in Medical, Surgical, and Critical Areas (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.D.); (G.P.); (S.D.F.); (C.M.); (S.D.B.)
| | - Sebastiano Di Bella
- Department of Precision Medicine in Medical, Surgical, and Critical Areas (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.D.); (G.P.); (S.D.F.); (C.M.); (S.D.B.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (C.D.M.); (B.P.); (V.L.C.)
| | - Giorgio Stassi
- Department of Precision Medicine in Medical, Surgical, and Critical Areas (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.D.); (G.P.); (S.D.F.); (C.M.); (S.D.B.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (C.D.M.); (B.P.); (V.L.C.)
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.T.); (M.T.)
| |
Collapse
|
6
|
Bhaliya KR, Anwer M, Munn A, Wei MQ. New horizons in cancer immunotherapy: The evolving role of R848 and R837 (Review). Mol Clin Oncol 2025; 22:4. [PMID: 39563999 PMCID: PMC11574705 DOI: 10.3892/mco.2024.2799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 11/21/2024] Open
Abstract
Therapeutic approaches that increase the efficacy and safety of cancer treatments and improve disease outcomes have been developed worldwide. Immunotherapy uses the body's immune system to inhibit cancerous growth in tissues and organs. Various approaches have been developed to effectively control and inhibit cancerous growth, including checkpoint inhibitors, T-cell transfer therapy, monoclonal antibodies, vaccines and immunomodulators. Toll-like receptors (TLRs) target malignant cells by equipping the immune response. In addition, TLR agonists serve a key role in promoting the innate immune system and initiating antigen-specific T-cell responses. Notably, TLRs and TLR agonists have been utilized as monotherapies or in combination for the treatment of cancer. The present study aimed to review the use of R848 and R837 as TLR agonists, and outline their use as key immunomodulators in cancer therapy.
Collapse
Affiliation(s)
- Krupa R Bhaliya
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| | - Muneera Anwer
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| | - Alan Munn
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| | - Ming Q Wei
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| |
Collapse
|
7
|
Porgador A. Unveiling the relevance of immune checkpoints for innate and adaptive response to hepatocellular carcinoma using improved model of humanized mice. Mol Ther 2024; 32:3761-3762. [PMID: 39471800 PMCID: PMC11573606 DOI: 10.1016/j.ymthe.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024] Open
|
8
|
Al-Obaidi I, Sandhu C, Qureshi B, Seymour LW. The implications of oncolytic viruses targeting fibroblasts in enhancing the antitumoural immune response. Heliyon 2024; 10:e39204. [PMID: 39502212 PMCID: PMC11535324 DOI: 10.1016/j.heliyon.2024.e39204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Oncolytic viruses (OVs) are an emerging immunotherapy platform that selectively target tumour cells, inducing immunogenic cell death. This reverses the 'immune-desert' phenotype of tumours, enhancing antitumour immunity. However, oncolytic virotherapy has shown limited efficacy in solid tumours due to the presence of protumoural, immunosuppressive cancer-associated fibroblasts (CAFs). Recent studies have explored OVs that specifically target CAFs to enhance antitumoural immune responses, with promising results. Nevertheless, detailed interrogation of the experimental design of these studies casts doubt on their potential for successful clinical translation. Most studies targeted CAFs non-specifically, failing to acknowledge CAF heterogeneity, with antitumoural CAFs also present. Thus, use of transcriptomics is advisable to provide more focused targeting, limiting potential off-target toxicity. Furthermore, experiments to date have largely been conducted in murine models that do not faithfully recapitulate tumour microenvironments, potentially biasing the efficacy observed. Future work should make use of humanised patient-derived xenograft murine models for animal studies, after which primary human tumour biopsies should be utilised to more closely represent the patient population for maximal translation relevance. Additionally, approaches to enhance the antitumoural immune responses of this therapy should be prioritised, with the ultimate aim of achieving complete remission, which has not yet been observed pre-clinically.
Collapse
Affiliation(s)
- Ibrahem Al-Obaidi
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- The Queen's College, High Street. Oxford, OX1 4AW, UK
| | - Ciaran Sandhu
- The Queen's College, High Street. Oxford, OX1 4AW, UK
| | - Bilal Qureshi
- Somerville College, Woodstock Road, Oxford, OX2 6HD, UK
| | - Leonard W. Seymour
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
9
|
Esposito A, Ferraresi A, Vallino L, Garavaglia B, Dhanasekaran DN, Isidoro C. Three-Dimensional In Vitro Cell Cultures as a Feasible and Promising Alternative to Two-Dimensional and Animal Models in Cancer Research. Int J Biol Sci 2024; 20:5293-5311. [PMID: 39430243 PMCID: PMC11488579 DOI: 10.7150/ijbs.96469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer represents one of the diseases with the highest mortality rate worldwide. The burden of cancer continues to increase, not only affecting the health-related quality of life of patients but also causing an elevated global financial impact. The complexity and heterogeneity of cancer pose significant challenges in research and clinical practice, contributing to increase the failure rate of clinical trials for antitumoral drugs. This is partially due to the fact that preclinical models still present important limitations in faithfully recapitulating human tumors to serve as reliable indicators of drug effectiveness. Up to now, research and development strategies employ expensive animal models (including the so-called "humanized mice") that not only raise ethical concerns, but also frequently fail to accurately predict responses to anticancer drugs because they do not faithfully replicate human physiology as well as the patient's tumor microenvironment. On the other side, traditional two-dimensional (2D) cell cultures fail to adequately reproduce the structural organization of tumor and the cellular heterogeneity found in vivo. The growing necessity to develop more accurate cancer models has increasingly emphasized the importance of three-dimensional (3D) in vitro cell cultures, such as cancer-derived spheroids and organoids, as promising alternatives to bridge the gap between 2D and animal models. In this review, we provide a brief overview focusing on 3D in vitro cell cultures as preclinical models capable of properly reproducing the tissue organization, biological composition, and complexity of in vivo tumors in a fine-tuned microenvironment. Despite their limitations, these models collectively enhance our understanding of the mechanisms underlying cancer and may offer the potential for a more reliable assessment of drug efficacy before clinical testing and, consequently, improve therapeutic outcomes for cancer patients.
Collapse
Affiliation(s)
- Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
10
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
11
|
Zhang C, Sui Y, Liu S, Yang M. In vitro and in vivo experimental models for cancer immunotherapy study. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100210. [DOI: 10.1016/j.crbiot.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
|
12
|
Sandbank E, Eckerling A, Margalit A, Sorski L, Ben-Eliyahu S. Immunotherapy during the Immediate Perioperative Period: A Promising Approach against Metastatic Disease. Curr Oncol 2023; 30:7450-7477. [PMID: 37623021 PMCID: PMC10453707 DOI: 10.3390/curroncol30080540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Tumor excision is a necessary life-saving procedure in most solid cancers. However, surgery and the days before and following it, known as the immediate perioperative period (IPP), entail numerous prometastatic processes, including the suppression of antimetastatic immunity and direct stimulation of minimal residual disease (MRD). Thus, the IPP is pivotal in determining long-term cancer outcomes, presenting a short window of opportunity to circumvent perioperative risk factors by employing several therapeutic approaches, including immunotherapy. Nevertheless, immunotherapy is rarely examined or implemented during this short timeframe, due to both established and hypothetical contraindications to surgery. Herein, we analyze how various aspects of the IPP promote immunosuppression and progression of MRD, and how potential IPP application of immunotherapy may interact with these deleterious processes. We discuss the feasibility and safety of different immunotherapies during the IPP with a focus on the latest approaches of immune checkpoint inhibition. Last, we address the few past and ongoing clinical trials that exploit the IPP timeframe for anticancer immunotherapy. Accordingly, we suggest that several specific immunotherapies can be safely and successfully applied during the IPP, alone or with supporting interventions, which may improve patients' resistance to MRD and overall survival.
Collapse
Affiliation(s)
- Elad Sandbank
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Anabel Eckerling
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Adam Margalit
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Liat Sorski
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Shamgar Ben-Eliyahu
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|