1
|
Liu M, Wang J, Chen G, Wang L, Wang X, Xiang B, Deng Y, He C, Wang L. Neutrophils-mediated accelerated blood clearance phenomenon in beagles and rats based on the cross-injection of non-PEGylated and PEGylated nanoemulsions. Int J Pharm X 2025; 9:100318. [PMID: 40070371 PMCID: PMC11894323 DOI: 10.1016/j.ijpx.2025.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The initial injection of PEGylated nanoparticles can activate antibodies and the complement system, leading to the accelerated blood clearance (ABC) phenomenon, characterized by reduced circulation time and abnormal liver and spleen accumulation upon re-exposure. However, PEGylation is not essential for ABC induction, as non-PEGylated nanoparticles can also trigger the similar ABC phenomenon. In this study, we found non-PEGylated nanoemulsions (CE) could accelerate the blood clearance of subsequent injection of PEGylated nanoemulsions (PE) in beagles and rats, which was independent of antibodies and the complement system, but was associated with an increase in neutrophil numbers and phagocytic activity. We propose classifying this as a "general ABC phenomenon," broadening clinical relevance and highlighting potential immune risks of ABC phenomenon. The intensity of the ABC phenomenon correlated with the initial CE phospholipid dose in both species. Notably, larger CE particles (∼ 300 nm) induced the ABC phenomenon in beagles, while smaller particles (∼ 80 nm) with higher immunogenicity were required in rats. This suggested that beagles are more susceptible to CE-induced ABC phenomenon. The higher neutrophil proportion in beagles likely contributed to species differences in ABC phenomenon. This is the first study to report neutrophil involvement in ABC induction by non-PEGylated nanoparticles, more importantly, underscoring potential immune risks in the cross-injection of non-PEGylated and PEGylated nanoparticles during the developments and clinical applications of nano-drug delivery systems.
Collapse
Affiliation(s)
- Mengyang Liu
- Postdoctoral Research Station in Clinical Medicine of Hebei Medical University, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jia Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ge Chen
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang 050011, PR China
| | - Lirong Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xuling Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Bai Xiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yihui Deng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chaoxing He
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lei Wang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang 050011, PR China
| |
Collapse
|
2
|
Zhong R, He H, Wang X. Novel neutrophil targeting platforms in treating Glioblastoma: Latest evidence and therapeutic approaches. Int Immunopharmacol 2025; 150:114173. [PMID: 39938169 DOI: 10.1016/j.intimp.2025.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal type of primary brain tumor, characterized by its rapid growth, resistance to conventional therapies, and a highly immunosuppressive tumor microenvironment (TME). Recent studies have highlighted the critical role of neutrophils in the progression of GBM, where they contribute to tumor growth, invasion, and treatment resistance. As a result, neutrophils have emerged as a promising target for therapeutic intervention in GBM. Various strategies are being investigated to specifically target neutrophils within the GBM environment, including using small molecules, antibodies, and nanoparticle-based methods. These approaches aim to regulate neutrophils' recruitment, activation, and functions. This study reviews the latest findings regarding the involvement of neutrophils in GBM, explores potential techniques targeting neutrophils for therapeutic purposes, and discusses current clinical studies and prospects in this rapidly evolving field. By studying the diverse functions of neutrophils in GBM, these innovative therapeutic strategies can help address some of the most significant challenges in treating this malignancy.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China
| | - Hongmei He
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China
| | - Xiande Wang
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China.
| |
Collapse
|
3
|
Rao Z, Tang Y, Zhu J, Lu Z, Chen Z, Wang J, Bao Y, Mukondiwa AV, Wang C, Wang X, Luo Y, Li X. Enhanced FGF21 Delivery via Neutrophil-Membrane-Coated Nanoparticles Improves Therapeutic Efficacy for Myocardial Ischemia-Reperfusion Injury. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:346. [PMID: 40072149 PMCID: PMC11901824 DOI: 10.3390/nano15050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart. Here, we test the therapeutic efficacy of FGF21 in mice with ischemia-reperfusion (I/R) injury, a model of acute myocardial infarction. We employed the strategic method of coating the FGF21-encapsulating liposomal nanoparticles with a neutrophil membrane designed to camouflage FGF21 from macrophage-mediated efferocytotic clearance and promote its targeted accumulation at I/R foci due to the inherent neutrophilic attraction to the inflammatory site. Our findings revealed that the coated FGF21 nanoparticles markedly accumulated within the lesions with a prolonged half-life, in additional to the liver, leading to substantial improvements in cardiac performance by enhancing mitochondrial energetic function and reducing oxidative stress, inflammation, and cell death. Therefore, our research highlights a viable strategy for the enhanced delivery of therapeutical FGF21 analogs to lesions beyond the liver following myocardial infarction.
Collapse
Affiliation(s)
- Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Yuli Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Jiamei Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Zhenzhen Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Zhichao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Jiaojiao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Yuxuan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Alan Vengai Mukondiwa
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
- Oujiang Laboratory, Wenzhou 325000, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
- Oujiang Laboratory, Wenzhou 325000, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
4
|
Zamanian MY, Zafari H, Osminina MK, Skakodub AA, Al‐Aouadi RFA, Golmohammadi M, Nikbakht N, Fatemi I. Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms. Animal Model Exp Med 2025; 8:5-19. [PMID: 39627850 PMCID: PMC11798740 DOI: 10.1002/ame2.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects approximately 0.46% of the global population. Conventional therapeutics for RA, including disease-modifying antirheumatic drugs (DMARDs), nonsteroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, frequently result in unintended adverse effects. Dexamethasone (DEX) is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties. Liposomal delivery of DEX, particularly when liposomes are surface-modified with targeting ligands like peptides or sialic acid, can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity. This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA. Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models, reduces joint inflammation and damage, and alleviates cartilage destruction compared to free DEX. The liposomal formulation also shows better hemocompatibility, fewer adverse effects on body weight and immune organ index, and a longer circulation time with higher bioavailability. The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) and B-cell-activating factor (BAFF), which are key players in the pathogenesis of RA. Additionally, liposomal DEX can induce the expression of anti-inflammatory cytokines like interleukin-10 (IL-10), which has significant anti-inflammatory and immunoregulatory properties. The findings suggest that liposomal DEX represents a promising candidate for effective and safe RA therapy, with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Hamidreza Zafari
- Department of Orthopedic Surgery, Joint Reconstruction Research Center, Imam Khomeini Hospital Complex, School of MedicineTehran University of Medical SciencesTehranIran
| | - Maria K. Osminina
- Pediatric departmentI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | - Alla A. Skakodub
- Department of Pediatric Preventive Dentistry E.V. BorovskyI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | | | | | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Iman Fatemi
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| |
Collapse
|
5
|
Luo M, Zhao FK, Wang YM, Luo Y. Nanomotors as Therapeutic Agents: Advancing Treatment Strategies for Inflammation-Related Diseases. CHEM REC 2024; 24:e202400162. [PMID: 39499104 DOI: 10.1002/tcr.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Inflammation is a physiological response of the body to harmful stimuli such as pathogens, damaged cells, or irritants, involving a series of cellular and molecular events. It is associated with various diseases including neurodegenerative disorders, cancer, and atherosclerosis, and is a leading cause of global mortality. Key inflammatory factors, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1 (IL-1), Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1/CCL2), RANTES (CCL5), and prostaglandins, play central roles in inflammation and disease progression. Traditional treatments such as NSAIDs, steroids, biologic agents, and antioxidants have limitations. Recent advancements in nanomaterials present promising solutions for treating inflammation-related diseases. Unlike nanomaterials that rely on passive targeting and face challenges in precise drug delivery, nanomotors, driven by chemical or optical stimuli, offer a more dynamic approach by actively navigating to inflammation sites, thereby enhancing drug delivery efficiency and therapeutic outcomes. Nanomotors allow for controlled drug release in response to specific environmental changes, such as pH and inflammatory factors, ensuring effective drug concentrations at disease sites. This active targeting capability enables the use of smaller drug doses, which reduces overall drug usage, costs, and potential side effects compared to traditional treatments. By improving precision and efficiency, nanomotors address the limitations of conventional therapies and represent a significant advancement in the treatment of inflammation-related diseases. This review summarizes the latest research on nanomotor-mediated treatment of inflammation-related diseases and discusses the challenges and future directions for optimizing their clinical translation.
Collapse
Affiliation(s)
- Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
6
|
Ma Y, Zhao Y, Zhang X. Factors affecting neutrophil functions during sepsis: human microbiome and epigenetics. J Leukoc Biol 2024; 116:672-688. [PMID: 38734968 DOI: 10.1093/jleuko/qiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a severe disease that occurs when the body's immune system reacts excessively to infection. The body's response, which includes an intense antibacterial reaction, can damage its tissues and organs. Neutrophils are the major components of white blood cells in circulation, play a vital role in innate immunity while fighting against infections, and are considered a feature determining sepsis classification. There is a plethora of basic research detailing neutrophil functioning, among which, the study of neutrophil extracellular traps is providing novel insights into mechanisms and treatments of sepsis. This review explores their functions, dysfunctions, and influences in the context of sepsis. The interplay between neutrophils and the human microbiome and the impact of DNA methylation on neutrophil function in sepsis are crucial areas of study. The interaction between neutrophils and the human microbiome is complex, particularly in the context of sepsis, where dysbiosis may occur. We highlight the importance of deciphering neutrophils' functional alterations and their epigenetic features in sepsis because it is critical for defining sepsis endotypes and opening up the possibility for novel diagnostic methods and therapy. Specifically, epigenetic signatures are pivotal since they will provide a novel implication for a sepsis diagnostic method when used in combination with the cell-free DNA. Research is exploring how specific patterns of DNA methylation in neutrophils, detectable in cell-free DNA, could serve as biomarkers for the early detection of sepsis.
Collapse
Affiliation(s)
- Yina Ma
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| |
Collapse
|
7
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
8
|
Lim SH, Yee GT, Khang D. Nanoparticle-Based Combinational Strategies for Overcoming the Blood-Brain Barrier and Blood-Tumor Barrier. Int J Nanomedicine 2024; 19:2529-2552. [PMID: 38505170 PMCID: PMC10949308 DOI: 10.2147/ijn.s450853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
The blood-brain barrier (BBB) and blood-tumor barrier (BTB) pose substantial challenges to efficacious drug delivery for glioblastoma multiforme (GBM), a primary brain tumor with poor prognosis. Nanoparticle-based combinational strategies have emerged as promising modalities to overcome these barriers and enhance drug penetration into the brain parenchyma. This review discusses various nanoparticle-based combinatorial approaches that combine nanoparticles with cell-based drug delivery, viral drug delivery, focused ultrasound, magnetic field, and intranasal drug delivery to enhance drug permeability across the BBB and BTB. Cell-based drug delivery involves using engineered cells as carriers for nanoparticles, taking advantage of their intrinsic migratory and homing capabilities to facilitate the transport of therapeutic payloads across BBB and BTB. Viral drug delivery uses engineered viral vectors to deliver therapeutic genes or payloads to specific cells within the GBM microenvironment. Focused ultrasound, coupled with microbubbles or nanoparticles, can temporarily disrupt the BBB to increase drug permeability. Magnetic field-guided drug delivery exploits magnetic nanoparticles to facilitate targeted drug delivery under an external magnetic field. Intranasal drug delivery offers a minimally invasive avenue to bypass the BBB and deliver therapeutic agents directly to the brain via olfactory and trigeminal pathways. By combining these strategies, synergistic effects can enhance drug delivery efficiency, improve therapeutic efficacy, and reduce off-target effects. Future research should focus on optimizing nanoparticle design, exploring new combination strategies, and advancing preclinical and clinical investigations to promote the translation of nanoparticle-based combination therapies for GBM.
Collapse
Affiliation(s)
- Su Hyun Lim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Gi Taek Yee
- Department of Neurosurgery, Gil Medical Center, Gachon University, School of Medicine, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
9
|
Garanina AS, Vishnevskiy DA, Chernysheva AA, Valikhov MP, Malinovskaya JA, Lazareva PA, Semkina AS, Abakumov MA, Naumenko VA. Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors. Pharmaceuticals (Basel) 2023; 16:1564. [PMID: 38004431 PMCID: PMC10674452 DOI: 10.3390/ph16111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application.
Collapse
Affiliation(s)
- Anastasiia S. Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
| | - Daniil A. Vishnevskiy
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Marat P. Valikhov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | | | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Maxim A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| |
Collapse
|
10
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|