1
|
Sanchez JM, Favaro MTP, López-Laguna H, Parladé E, Di Somma A, Casanova I, Unzueta U, Mangues R, Vazquez E, Voltà-Durán E, Villaverde A. Trans-Mediated, Cis-Inhibited Paradoxal Activity of Clostridium perfringens Enterotoxin (c-CPE) in Modulating Epithelial Permeability. Mol Pharm 2025; 22:1973-1982. [PMID: 40067325 DOI: 10.1021/acs.molpharmaceut.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
In the context of transdermal delivery, favoring the drug permeability of epithelia through convenient formulations would open new opportunities for local versus systemic drug delivery, envisaging higher patient comfort and an enhanced therapeutic effect. Ligands of tight junctions are interesting agents that enhance epithelial permeability by relaxing the protein complexes that form them. The C-terminal domain of Clostridium perfringens enterotoxin (c-CPE), which binds claudins, one of the tight junction (TJ) components, has been explored here as a functional domain in modular recombinant proteins, to evaluate its ability to self-promote its paracellular epithelial passage in a Caco-2 cell monolayer model. c-CPE-containing fusion proteins bind cells in the absence of internalization and cytotoxicity and support the passage, in trans, of other fusion proteins devoid of c-CPE. However, c-CPE-carrying proteins fail to cross the epithelia by themselves, probably because their affinity for TJs immobilizes them in the intercellular space. Therefore, while recombinant c-CPE versions have been here confirmed as convenient epithelial-permeabilizing agents, a paradoxical behavior has been observed where this effect is only successful when applied in trans, specifically on entities that lack c-CPE. Then, c-CPE itself inhibits the paracellular mobility of carrier molecules, not being suited as a self-driver (in c-CPE-drug complexes) for drug delivery through epithelia.
Collapse
Affiliation(s)
- Julieta M Sanchez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Marianna T P Favaro
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Department of Chemical Sciences, University of Naples "Federico II", Vicinale Cupa Cintia 26, Naples 80126, Italy
| | - Isolda Casanova
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ramón Mangues
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08034, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
2
|
Nagarajan SK, Weber J, Roderer D, Piontek J. C. perfringens enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability. Comput Struct Biotechnol J 2024; 27:287-306. [PMID: 39881828 PMCID: PMC11774686 DOI: 10.1016/j.csbj.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025] Open
Abstract
The pore-forming Clostridium perfringens enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca2+ influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g., claudin-4), CPE forms oligomeric pores in the cell membrane. While the mechanism of CPE-claudin interaction is well understood, the structure and assembly of the pore complex remain elusive. Here, we used AlphaFold2 complex prediction, structure alignment, and molecular dynamics simulations to generate models of prepore and pore states of the CPE/claudin-4 complex. We sequentially addressed CPE-claudin, CPE-CPE, and claudin-claudin interactions, along with CPE conformational changes. The CPE pore is a hexameric variant of the typical heptameric pore stem and cap architecture of aerolysin-like β-barrel pore-forming toxins (β-PFT). The pore is lined with three hexa-glutamate rings, which differ from other β-PFTs and confer CPE-specific cation selectivity. Additionally, the pore center is indicated to be anchored by a dodecameric claudin ring formed by a cis-interaction variant of an interface found in claudin-based tight junction strands. Mutation of an interface residue inhibited CPE-mediated cell damage in vitro. We propose that this claudin ring constitutes an anchor for a twisting mechanism that drives extension and membrane insertion of the CPE β-hairpins. Our pore model agrees with previous key experimental data and provides insights into the structural mechanisms of CPE-mediated cytotoxic cation influx.
Collapse
Affiliation(s)
- Santhosh Kumar Nagarajan
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Joy Weber
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniel Roderer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
3
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment. Commun Biol 2024; 7:733. [PMID: 38886509 PMCID: PMC11183071 DOI: 10.1038/s42003-024-06437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Pfizer, San Diego, CA, 92121, USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
4
|
Cardona-Echavarría MC, Santillán C, Miranda-Blancas R, Stojanoff V, Rudiño-Piñera E. Unveiling success determinants for AMB-assisted phase expansion of fusion proteins in ARP/wARP. J Struct Biol 2024; 216:108089. [PMID: 38537893 DOI: 10.1016/j.jsb.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Fusion proteins (FPs) are frequently utilized as a biotechnological tool in the determination of macromolecular structures using X-ray methods. Here, we explore the use of different protein tags in various FP, to obtain initial phases by using them in a partial molecular replacement (MR) and constructing the remaining FP structure with ARP/wARP. Usually, the tag is removed prior to crystallization, however leaving the tag on may facilitate crystal formation, and structural determination by expanding phases from known to unknown segments of the complex. In this study, the Protein Data Bank was mined for an up-to-date list of FPs with the most used protein tags, Maltose Binding Protein (MBP), Green Fluorescent Protein (GFP), Thioredoxin (TRX), Glutathione transferase (GST) and the Small Ubiquitin-like Modifier Protein (SUMO). Partial MR using the protein tag, followed by automatic model building, was tested on a subset of 116 FP. The efficiency of this method was analyzed and factors that influence the coordinate construction of a substantial portions of the fused protein were identified. Using MBP, GFP, and SUMO as phase generators it was possible to build at least 75 % of the protein of interest in 36 of the 116 cases tested. Our results reveal that tag selection has a significant impact; tags with greater structural stability, such as GFP, increase the success rate. Further statistical analysis identifies that resolution, Wilson B factor, solvent percentage, completeness, multiplicity, protein tag percentage in the FP (considering amino acids), and the linker length play pivotal roles using our approach. In cases where a structural homologous is absent, this method merits inclusion in the toolkit of protein crystallographers.
Collapse
Affiliation(s)
- María C Cardona-Echavarría
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C.P. 62210, Mexico; Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos C.P. 62209, Mexico.
| | | | - Ricardo Miranda-Blancas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico
| | - Vivian Stojanoff
- Brookhaven National Laboratory, Upton, NY 11973-5000, United States
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
5
|
Voges L, Weiß F, Branco AT, Fromm M, Krug SM. Expression and Localization Profiles of Tight Junction Proteins in Immune Cells Depend on Their Activation Status. Int J Mol Sci 2024; 25:4861. [PMID: 38732086 PMCID: PMC11084252 DOI: 10.3390/ijms25094861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The ability of the immune system to combat pathogens relies on processes like antigen sampling by dendritic cells and macrophages migrating through endo- and epithelia or penetrating them with their dendrites. In addition, other immune cell subtypes also migrate through the epithelium after activation. For paracellular migration, interactions with tight junctions (TJs) are necessary, and previous studies reported TJ protein expression in several immune cells. Our investigation aimed to characterize, in more detail, the expression profiles of TJ proteins in different immune cells in both naïve and activated states. The mRNA expression analysis revealed distinct expression patterns for TJ proteins, with notable changes, mainly increases, upon activation. At the protein level, LSR appeared predominant, being constitutively present in naïve cell membranes, suggesting roles as a crucial interaction partner. Binding experiments suggested the presence of claudins in the membrane only after stimulation, and claudin-8 translocation to the membrane occurred after stimulation. Our findings suggest a dynamic TJ protein expression in immune cells, implicating diverse functions in response to stimulation, like interaction with TJ proteins or regulatory roles. While further analysis is needed to elucidate the precise roles of TJ proteins, our findings indicate important non-canonical functions of TJ proteins in immune response.
Collapse
Affiliation(s)
- Lena Voges
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Franziska Weiß
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Ana-Teresa Branco
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Susanne M. Krug
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|