1
|
Li J, Xiong W, Yang J, Liao W, Gao Y, Chai J, Wu J, Liu S, Xu X. Characterization of the first antimicrobial peptide from Sea Seal with potent therapeutic effect in septic mice. Biochem Pharmacol 2025; 236:116891. [PMID: 40147802 DOI: 10.1016/j.bcp.2025.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Marine organisms are a valuable source of natural bioactive substances, and an increasing number of marine antimicrobial peptides as the potential alternative to antibiotics are being developed. Nonetheless, antimicrobial peptides from Antarctic mammals have not been reported heretofore. In this context, we identified a Cathelicidin antimicrobial peptide, Cath-LW (RLRDLIRRGRQKIGRRINRLGRRIQDILKNLQPGKVS), from the whole-genome database of Leptonychotes weddellii, an Antarctic mammal. Cath-LW was characterized to exhibit a typical α-helix structure and broad-spectrum antimicrobial activity. Furthermore, Cath-LW was found to exert its antibacterial effect by destroying cytomembrane, binding to bacterial genome, and inhibiting DNA function. Additionally, Cath-LW could neutralize lipopolysaccharide (LPS) and inhibit LPS-induced inflammatory responses. Interestingly, Cath-LW also showed anticoagulant activity and suppressed FeCl3-induced carotid thrombosis in mice. Finally, in septic mice, Cath-LW was demonstrated to improve the survival rate by effectively alleviating organ inflammation and damage, as well as thrombus formation. These findings not only deepen our understanding of the survival strategies of L. weddellii against microbial infections but also provide a crucial template for developing a novel multifunctional anti-sepsis drug.
Collapse
Affiliation(s)
- Jiali Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxi Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weifei Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihan Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Zhang Q. Antimicrobial peptides: from discovery to developmental applications. Appl Environ Microbiol 2025; 91:e0211524. [PMID: 40178173 PMCID: PMC12016500 DOI: 10.1128/aem.02115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a significant crisis in global health. Due to their advantageous properties, antimicrobial peptides (AMPs) have garnered considerable attention as a potential alternative therapy to address the AMR crisis. These peptides might disrupt cell membranes or cell walls to exhibit antimicrobial activity, or modulate the immune response to promote recovery from diseases. In recent years, significant progress has been made in the research of AMPs, alongside the emergence of new challenges. This review first systematically summarizes and critically discusses recent advancements in understanding the characteristics and current landscapes of AMPs, as well as their regulatory mechanisms of action and practical applications, particularly those reported or approved within the last 5 years. Additionally, the principles, paths for their identification, and future research trends in AMPs are also analyzed following a discussion of the advantages and disadvantages of AMPs in comparison to conventional antibiotics. Unlike significant prior literature in this field, this report has summarized the latest major discovery methods for AMPs and, more importantly, emphasized their practical applications by supporting various viewpoints using selected examples of AMPs' applications in real-life scenarios. Besides, some emerging hot topics of AMPs, including those derived from gut microbiota and their potential synergistic effects in combating AMR, were profiled. All of these indicate the originality of the report and provide valuable references for future AMP discoveries and applications.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
3
|
Pashaie F, Benne N, Holzapfel PIP, Veenendaal T, Bikker FJ, Heesterbeek DAC, Broere F, Veldhuizen EJA. PMAP-37: A versatile cathelicidin for neutralizing bacteria and viruses. Microb Pathog 2025; 204:107568. [PMID: 40228754 DOI: 10.1016/j.micpath.2025.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Antimicrobial peptides (AMPs), such as cathelicidins, show dual functionality by directly combating pathogens and indirectly eliminating them through stimulation of the immune system, generating interest in their therapeutic potential. Pigs have a large set of 11 cathelicidins, of which PMAP-37 is relatively understudied compared to some of the better-known cathelicidins. This study describes the effectiveness of PMAP-37 against both bacteria and viruses. PMAP-37 exhibited potent in vitro antimicrobial activity against both Gram-positive (Bacillus globigii) and Gram-negative bacteria (Escherichia coli) with minimum bactericidal concentrations (MBCs) of 2.5 and 5 μM, respectively. PMAP-37 caused a rapid permeabilization of E. coli's outer and inner membranes within 5 min, indicating its efficacy in disrupting bacterial cell membranes. Furthermore, PMAP-37 neutralized nitric oxide production in a macrophage cell line stimulated with various forms of LPS, Lipid A, or LTA in a dose-dependent manner. Flow cytometric analysis confirmed PMAP-37's capacity to inhibit LPS binding to macrophages, while zeta potential analysis showed the peptide's capacity to neutralize the negative charge of both the E. coli membrane and LPS micellular surfaces. Interestingly, PMAP-37 also exhibited antiviral activity against an important porcine pathogen, the porcine epidemic diarrhea virus (PEDV). These findings underscore the multifunctional properties of PMAP-37, and provide potential leads for future therapeutic use within the pig industry.
Collapse
Affiliation(s)
- Fatemeh Pashaie
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Naomi Benne
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Philippa I P Holzapfel
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Tineke Veenendaal
- Cell Microscopy Core, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA, Amsterdam, the Netherlands
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Femke Broere
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Rizzetto G, De Simoni E, Molinelli E, Busignani C, Tagliati C, Gambini D, Offidani A, Simonetti O. Protegrin-1 and Analogues Against Acinetobacter baumannii: A Narrative Review. Pharmaceuticals (Basel) 2025; 18:289. [PMID: 40143068 PMCID: PMC11944781 DOI: 10.3390/ph18030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
A. baumannii is recognised as an important etiologic agent for hospital infections and increases the risk of postoperative complications, worsening mortality and prolonging hospitalisation. Protegrin-1 (PG-1) is one of the most promising antimicrobial peptides (AMPs) in the literature, since its antimicrobial action covers a wide range of Gram-positive and Gram-negative bacteria, including A. baumannii. PG-1 represents a valid new therapeutic option for the treatment of A. baumannii multi-drug resistant infections, showing synergic activity with traditional antibiotics, such as colistin. However, its clinical use in humans still requires studies, especially considering the haemolytic risk. For this reason, the use of PG-1 analogues, such as PLP-3, HV2, CDP-1, and IB367, seems to be the most promising way for the clinical use of this class of AMPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (G.R.); (E.D.S.); (E.M.); (C.B.); (C.T.); (D.G.); (A.O.)
| |
Collapse
|
5
|
Hosseini Goki N, Saberi MR, Amin M, Fazly Bazzaz BS, Khameneh B. Novel antimicrobial peptides based on Protegrin-1: In silico and in vitro assessments. Microb Pathog 2024; 196:106931. [PMID: 39288825 DOI: 10.1016/j.micpath.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The development of antibiotic resistance has caused significant health problems. Antimicrobial peptides (AMPs) are considered next-generation antibiotics. Protegrin-1 (PG-1) is a β-hairpin AMP with a membrane-binding capacity. This study used twelve PG-1 analogs with different amino acid substitutions. Coarse-grained molecular dynamics (MD) simulations were used to assess these analogs, and their physicochemical properties were computed using the Antimicrobial Peptide Database. Three AMPs, PEP-D, PEP-C, and PEP-H, were chosen and synthesized for antibacterial testing. The microbroth dilution technique and hemolytic assays evaluated the antimicrobial efficacy and cellular toxicity. The checkerboard method was used to test the combined activity of AMP and standard antibiotics. Cell membrane permeability and electron microscopy were used to evaluate the mode of action. The chemical stability of the selective AMP, PEP-D, was assessed by a validated HPLC method. PEP-D consists of 16-18 amino acid residues and has a charge of +7 and a hydrophobicity of 44 %, similar to PG-1. It can efficiently inactivate bacteria by disrupting cell membranes and significantly reducing hemolytic activity. Chemical stability studies indicated that AMP was stable at 40 °C for six months under autoclave conditions. This study could introduce the potential therapeutic application of selective AMP as an anti-infective agent.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Liu H, Yu Z, Liu L, Dong S. Cell Wall Binding Strategies Based on Cu 3SbS 3 Nanoparticles for Selective Bacterial Elimination and Promotion of Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33038-33052. [PMID: 38961578 DOI: 10.1021/acsami.4c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
7
|
Randall JR, Vieira LC, Wilke CO, Davies BW. Deep mutational scanning and machine learning for the analysis of antimicrobial-peptide features driving membrane selectivity. Nat Biomed Eng 2024; 8:842-853. [PMID: 39085646 PMCID: PMC12044605 DOI: 10.1038/s41551-024-01243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/12/2024] [Indexed: 08/02/2024]
Abstract
Many antimicrobial peptides directly disrupt bacterial membranes yet can also damage mammalian membranes. It is therefore central to their therapeutic use that rules governing the membrane selectivity of antimicrobial peptides be deciphered. However, this is difficult even for short peptides owing to the large combinatorial space of amino acid sequences. Here we describe a method for measuring the loss or maintenance of antimicrobial-peptide activity for thousands of peptide-sequence variants simultaneously, and its application to Protegrin-1, a potent yet toxic antimicrobial peptide, to determine the positional importance and flexibility of residues across its sequence while identifying variants with changes in membrane selectivity. More bacterially selective variants maintained a membrane-bound secondary structure while avoiding aromatic residues and cysteine pairs. A machine-learning model trained with our datasets accurately predicted membrane-specific activities for over 5.7 million Protegrin-1 variants, and identified one variant that showed substantially reduced toxicity and retention of activity in a mouse model of intraperitoneal infection. The high-throughput methodology may help elucidate sequence-structure-function relationships in antimicrobial peptides and inform the design of peptide-based synthetic drugs.
Collapse
Affiliation(s)
- Justin R Randall
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Luiz C Vieira
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Xu J, Xu X, Jiang Y, Fu Y, Shen C. Waste to resource: Mining antimicrobial peptides in sludge from metagenomes using machine learning. ENVIRONMENT INTERNATIONAL 2024; 186:108574. [PMID: 38507933 DOI: 10.1016/j.envint.2024.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
The emergence of antibiotic-resistant bacteria poses a huge threat to the treatment of infections. Antimicrobial peptides are a class of short peptides that widely exist in organisms and are considered as potential substitutes for traditional antibiotics. Here, we use metagenomics combined with machine learning to find antimicrobial peptides from environmental metagenomes and successfully obtained 16,044,909 predicted AMPs. We compared the abundance of potential antimicrobial peptides in natural environments and engineered environments, and found that engineered environments also have great potential. Further, we chose sludge as a typical engineered environmental sample, and tried to mine antimicrobial peptides from it. Through metaproteome analysis and correlation analysis, we mined 27 candidate AMPs from sludge. We successfully synthesized 25 peptides by chemical synthesis, and experimentally verified that 21 peptides had antibacterial activity against the 4 strains tested. Our work highlights the potential for mining new antimicrobial peptides from engineered environments and demonstrates the effectiveness of mining antimicrobial peptides from sludge.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Xin Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Yunhan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, China.
| |
Collapse
|
9
|
Panteleev PV, Safronova VN, Duan S, Komlev AS, Bolosov IA, Kruglikov RN, Kombarova TI, Korobova OV, Pereskokova ES, Borzilov AI, Dyachenko IA, Shamova OV, Huang Y, Shi Q, Ovchinnikova TV. Novel BRICHOS-Related Antimicrobial Peptides from the Marine Worm Heteromastus filiformis: Transcriptome Mining, Synthesis, Biological Activities, and Therapeutic Potential. Mar Drugs 2023; 21:639. [PMID: 38132960 PMCID: PMC10745061 DOI: 10.3390/md21120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids. In this paper, we report the discovery of 13 novel BRICHOS-related peptides, ranging from 18 to 91 amino acid residues in length, in the cosmopolitan marine worm Heteromastus filiformis with the assistance of transcriptome mining. Two characteristic peptides with a low homology in relation to known AMPs-the α-helical amphiphilic linear peptide, consisting of 28 amino acid residues and designated as HfBRI-28, and the 25-mer β-hairpin peptide, specified as HfBRI-25 and having a unique structure stabilized by two disulfide bonds-were obtained and analyzed as potential antimicrobials. Interestingly, both peptides showed the ability to kill bacteria via membrane damage, but mechanisms of their action and spectra of their activity differed significantly. Being non-cytotoxic towards mammalian cells and stable to proteolysis in the blood serum, HfBRI-25 was selected for further in vivo studies in a lethal murine model of the Escherichia coli infection, where the peptide contributed to the 100% survival rate in animals. A high activity against uropathogenic strains of E. coli (UPEC) as well as a strong ability to kill bacteria within biofilms allow us to consider the novel peptide HfBRI-25 as a promising candidate for the clinical therapy of urinary tract infections (UTI) associated with UPEC.
Collapse
Affiliation(s)
- Pavel V. Panteleev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.P.); (V.N.S.); (S.D.); (I.A.B.); (R.N.K.)
| | - Victoria N. Safronova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.P.); (V.N.S.); (S.D.); (I.A.B.); (R.N.K.)
| | - Shuting Duan
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.P.); (V.N.S.); (S.D.); (I.A.B.); (R.N.K.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; (Y.H.); (Q.S.)
| | - Alexey S. Komlev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 197022 St. Petersburg, Russia; (A.S.K.); (O.V.S.)
| | - Ilia A. Bolosov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.P.); (V.N.S.); (S.D.); (I.A.B.); (R.N.K.)
| | - Roman N. Kruglikov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.P.); (V.N.S.); (S.D.); (I.A.B.); (R.N.K.)
| | - Tatiana I. Kombarova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia; (T.I.K.); (O.V.K.); (E.S.P.); (A.I.B.)
| | - Olga V. Korobova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia; (T.I.K.); (O.V.K.); (E.S.P.); (A.I.B.)
| | - Eugenia S. Pereskokova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia; (T.I.K.); (O.V.K.); (E.S.P.); (A.I.B.)
| | - Alexander I. Borzilov
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia; (T.I.K.); (O.V.K.); (E.S.P.); (A.I.B.)
| | - Igor A. Dyachenko
- The Branch of M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Olga V. Shamova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 197022 St. Petersburg, Russia; (A.S.K.); (O.V.S.)
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; (Y.H.); (Q.S.)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; (Y.H.); (Q.S.)
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.P.); (V.N.S.); (S.D.); (I.A.B.); (R.N.K.)
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|