1
|
Abu-Elfotuh K, Al-Rekabi MD, Abbas AN, Darwish A, Hamdan AME, Elsanhory HMA, Alkhamali A, Alharthi FA, Elshahat RM, Atwa AM, Abdelhakim KR, Negm AM, Hamdan AM, Gowifel AMH. Combining vinpocetine or cocoa with levodopa, Coenzyme Q10 and vitamin B complex mitigates rotenone-induced Parkinson's disease in rats: Impact on Nrf2/HO-1, NF-kB, AMPK/SIRT-1/Beclin-1, AKT/GSK-3β/CREB/BDNF and Apoptotic Pathways. Biomed Pharmacother 2025; 186:118011. [PMID: 40158278 DOI: 10.1016/j.biopha.2025.118011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
There are no curative treatments for Parkinson's disease (PD), and current treatments focus on symptomatic management. This study aimed to investigate the beneficial effects of combining L-DOPA/Carbidopa with essential cofactors (vitamin (VIT) B complex and coenzyme Q10 (CoQ10)), alone or in conjunction with vinpocetine (VIN) or cocoa, as a potential strategy to enhance neuroprotection in rotenone (RT)-induced PD rat model, highlighting mechanistic insights into their underlying neuroprotective mechanisms and focusing on addressing oxidative stress, inflammation, autophagy, and apoptosis. These combinations were tested on adult male Wistar rats allocated into six groups. Group I received saline (normal control), while groups II-VI were injected with RT for 19 days to induce PD. Group II received RT alone, group III received daily oral L-DOPA/Carbidopa, and groups IV-VI received L-DOPA/Carbidopa with VIT B complex and CoQ10, either alone (Group IV) or combined with cocoa (Group V) or VIN (Group VI). These treatments markedly improved RT-induced perturbations in locomotor and cognitive outcomes; neurotransmitters' levels; oxidative stress (Nrf2/HO-1, MDA, INOS, SOD and TAC); inflammatory (NF-κB, TNF-α, IL-1β, GFAP and COX-2); neurotrophic (AKT/CREB/BDNF); apoptotic (BAX, caspase-3, AIF, and Bcl-2); and autophagic (AMPK/SIRT-1/Beclin-1) biomarkers; histopathological findings and tyrosine hydroxylase (TH) immunoexpression. Furthermore, the best outcomes were observed in cocoa and VIN combinations. These results indicated that combining L-DOPA with CoQ10 and VIT B complex in conjunction with either VIN or cocoa could provide a potential strategy for managing motor impairments and preventing neurodegeneration in PD. The interaction between key signaling pathways, including Nrf2/HO-1, NF-kB, AMPK/SIRT-1, and AKT/GSK-3β/CREB/BDNF, likely mediates this effect. However, further clinical validation is required to assess this approach's real-world applicability and therapeutic potential.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq.
| | | | - Ashwaq N Abbas
- University of Sulaimanyia, College of Dentistry, Kurdistan, Iraq.
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; Prince Fahad bin Sultan Chair for Biomedical Research (PFSCBR), Tabuk 74191, Saudi Arabia.
| | - Heba M A Elsanhory
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, Kantara Branch, New Ismailia, Egypt.
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | | | - Rehab M Elshahat
- Department of Pharmacology, Faculty of Medicine (Girls), Al-Azhar University, Egypt.
| | - Ahmed M Atwa
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq; Pharmacology and Toxicology Department, Faculty of Pharmacy. Egyptian Russian University, Cairo 11829, Egypt.
| | - Khaled R Abdelhakim
- Histology Department, Misr University for Science and Technology, Cairo, Egypt.
| | - Amira M Negm
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
2
|
Hard SAAA, Shivakumar HN, Bafail DA, Moqbel Redhwan MA. Development of in vitro and in vivo evaluation of mucoadhesive in-situ gel for intranasal delivery of vinpocetine. J Drug Target 2025; 33:528-545. [PMID: 39601452 DOI: 10.1080/1061186x.2024.2433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
ABSTRACT Alzheimer's disease (AD), which is marked by gradual neuronal decline and subsequent loss of cognitive functions and memory, poses significant treatment challenges. The present study involved the development, in vitro, and in vivo evaluation of a novel intranasal mucoadhesive in-situ gel of vinpocetine (VIN) with the aim to target the brain. An innovative gel formulation composed of poloxamer 407, HPMC E15 LV, and citric acid as a solubilizer was developed by 23 Factorial Design. The developed optimal formulation exhibited favorable rheological properties as it displayed ideal gelation time (31.6 ± 1.52 sec), optimum gelling temperature (32 ± 1.0 °C), enhanced mucoadhesive strength (6622 ± 2.64 dynes/cm2), prolonged adhesion (7.22 ± 0.57 hrs) compared with the baseline formulation (F18), and improved drug release in 12 hrs (39.59 ± 1.6%). In vivo, pharmacokinetics revealed a significant increase in Cmax (∼2-fold) and AUC0-t (∼2-fold) in the brain with the in-situ intranasal gel compared to the oral route. In the rat model of AD, in-situ intranasal gel demonstrated significantly greater efficacy (p < 0.001) than oral administration in alleviating AD symptoms as evidenced by behavioral and histological studies. Thus, VIN in-situ gel can be safe and noninvasive for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Sumaia Abdulbari Ahmed Ali Hard
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - H N Shivakumar
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moqbel Ali Moqbel Redhwan
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Faraji N, Ebadpour N, Abavisani M, Gorji A. Unlocking Hope: Therapeutic Advances and Approaches in Modulating the Wnt Pathway for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:3630-3652. [PMID: 39313658 PMCID: PMC11790780 DOI: 10.1007/s12035-024-04462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Neurodegenerative diseases (NDs) are conditions characterized by sensory, motor, and cognitive impairments due to alterations in the structure and function of neurons in the central nervous system (CNS). Despite their widespread occurrence, the exact causes of NDs remain largely elusive, and existing treatments fall short in efficacy. The Wnt signaling pathway is an emerging molecular pathway that has been linked to the development and progression of various NDs. Wnt signaling governs numerous cellular processes, such as survival, polarity, proliferation, differentiation, migration, and fate specification, via a complex network of proteins. In the adult CNS, Wnt signaling regulates synaptic transmission, plasticity, memory formation, neurogenesis, neuroprotection, and neuroinflammation, all essential for maintaining neuronal function and integrity. Dysregulation of both canonical and non-canonical Wnt signaling pathways contributes to neurodegeneration through various mechanisms, such as amyloid-β accumulation, tau protein hyperphosphorylation, dopaminergic neuron degeneration, and synaptic dysfunction, prompting investigations into Wnt modulation as a therapeutic target to restore neuronal function and prevent or delay neurodegenerative processes. Modulating Wnt signaling has the potential to restore neuronal function and impede or postpone neurodegenerative processes, offering a therapeutic approach for targeting NDs. In this article, the current knowledge about how Wnt signaling works in Alzheimer's disease and Parkinson's disease is discussed. Our study aims to explore the molecular mechanisms, recent discoveries, and challenges involved in developing Wnt-based therapies.
Collapse
Affiliation(s)
- Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Epilepsy Research Center, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neurosurgery Department, Münster University, Münster, Germany.
| |
Collapse
|
4
|
Fayed EA, El-Sebaey SA, Ebrahim MA, Abu-Elfotuh K, El-Sayed Mansour R, Mohamed EK, Hamdan AME, Al-Subaie FT, Albalawi GS, Albalawi TM, Hamdan AM, Mohammed AA, Ramsis TM. Discovery of novel bicyclic and tricyclic cyclohepta[b]thiophene derivatives as multipotent AChE and BChE inhibitors, in-Vivo and in-Vitro assays, ADMET and molecular docking simulation. Eur J Med Chem 2025; 284:117201. [PMID: 39731791 DOI: 10.1016/j.ejmech.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Alzheimer's disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD. All synthesized compounds exhibited AChE inhibition with IC50 values below 15 μM, while all compounds exhibited BChE inhibition with IC50 values below 25 μM. Compounds 9 and 12 exhibited AChE inhibitory activities with IC50 values of 0.51 μM and 0.55 μM, respectively. Compounds 5 and 9 demonstrated excellent inhibitory activity against BChE with IC50 values of 2.9 μM and 2.48 μM, respectively. Compounds 9, 13, and 14 were found to be the most active in terms of the decrease in the escape latency time, with values comparable to that of Donepezil. Compounds 10, 11, and 12 exhibited promising effects on learning and memory. Compounds 5, 10, 11, and 12 exhibited promising SAP values of 70.67 %, 71.5 %, 74.33 % and 73.83 %, respectively. Other biomarkers were evaluated in rat brains including TAC, MDA, SOD, BDNF, IL-β and TNF-α. Fundamental features of ADMET have been computed in-silico for synthesized compounds. Molecular docking was performed to confirm the binding of the novel compounds to the targets.
Collapse
Affiliation(s)
- Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
| | - Samiha Ahmed El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Maha A Ebrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt; College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Reda El-Sayed Mansour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Ehsan Khedre Mohamed
- Department of Biochemistry, Egyptian DRUG AUTHORITY (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| | - Ahmed M E Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia; Prince Fahad bin Sultan Chair for Biomedical Research, University of Tabuk, Saudi Arabia
| | | | | | | | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa A Mohammed
- Department Pharmacology and Toxicology, Faculty of Pharmacy Girls Al-Azhar University, Cairo, 11754, Egypt
| | - Triveena M Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt
| |
Collapse
|
5
|
Shrief AI, Elshenawy DS, Elsukary AE, Elekhtiar SA, Yahia OA. Behavioral and histological study on the neuroprotective effect of thymoquinone on the cerebellum in AlCl3-induced neurotoxicity in rats through modulation of oxidative stress, apoptosis, and autophagy. J Mol Histol 2025; 56:81. [PMID: 39912993 DOI: 10.1007/s10735-025-10361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Alzheimer disease (AD) is a neurodegenerative condition. Thymoquinone (TQ) is a natural compound that possesses beneficial biological effects on the brain. The present study evaluates the protective impact of TQ on the cerebellum in rats with AlCl3-induced Alzheimer's disease. Four groups were utilized. Control: 20 rats that were subdivided into two subgroups. Ia: received distilled water for 4 weeks. Ib: received corn oil via oral gavage (1 ml/kg daily) for 4 weeks. TQ group: 10 rats received TQ in corn oil via oral gavage (20 mg/kg daily) for 4 weeks. AD group:10 rats received AlCl3 in distilled water via oral gavage (300 mg/kg daily) for 4 weeks. AD & TQ group: 10 rats received both AlCl3 & TQ for 4 weeks. The grip period in the rotarod test decreased, escape latency in first three days and the entry latency period to the quadrant with the removed escape platform in the Morris water maze test increased in AD group, but when TQ was administered concurrently, there was a noteworthy improvement. Meanwhile, when compared to AD group, the addition of TQ showed a significant decrease (P < 0.05) in levels of malondialdehyde (MDA) and nitric oxide (NO), associated with a significant increase (P < 0.05) in reduced glutathione (GSH) level. Furthermore, AD & TQ group exhibited substantial preservation of the cerebellum's histological structure, the Purkinje cells number and transverse diameter showed a high significant increase (P < 0.001) and a significant increase (P < 0.05), respectively in comparison to the AD group. Using TQ showed improvement in behavioral tests, biochemical and histological findings. Thus, TQ might have therapeutic effects on Alzheimer's disease.
Collapse
Affiliation(s)
- Amira I Shrief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Horus University, New Damietta City, Egypt.
| | - Dina S Elshenawy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Elsukary
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| | - Sally A Elekhtiar
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Horus University, New Damietta City, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Ola A Yahia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| |
Collapse
|
6
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025; 8:266-286. [PMID: 39808166 PMCID: PMC11871115 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityCairoEgypt
| | - A. Dinesh Raja
- Department of PharmaceuticsKMCH College of PharmacyCoimbatoreIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, HyderabadIndia
| | - Chandan Nayak
- Department of Pharmaceutics, School of PharmacyArka Jain UniversityJharkhandIndia
| | - Senthilkumar Balakrishnan
- Department of PharmaceuticsJKKMMRF‐Annai JKK Sampoorani Ammal College of PharmacyKomarapalayamNamakkalIndia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaramIndia
| | - Saswati Panigrahi
- Department of Pharmaceutical ChemistrySt. John Institute of Pharmacy and ResearchVevoorPalgharIndia
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| |
Collapse
|
7
|
Basir HS, Mirazi N, Komaki A, Ramezani M, Hosseini A. Cacao Ameliorates Amyloid Beta-Induced Cognitive and Non-Cognitive Disturbances. Neurosci Insights 2024; 19:26331055241280638. [PMID: 39314637 PMCID: PMC11418343 DOI: 10.1177/26331055241280638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurological disorder characterized by a wide range of cognitive and non-cognitive impairments. The present study was designed to investigate the potential effects of cacao on cognitive and non-cognitive performance and to identify the role of oxidative stress in an AD animal model induced by unilateral intracerebroventricular (U-ICV) injection of amyloid beta1-42 (Aβ1-42). Methods Oral administration of cacao (0.5 g/kg/day) was performed for 60 consecutive days. Following 60 days, the open-field (OF) test, elevated plus-maze (EPM) test, novel object recognition (NOR) test, Barnes maze (BM) test, and Morris water maze (MWM) test were used to evaluate locomotor activity, anxiety-like behavior, recognition memory, and spatial memory, respectively. Total oxidant status (TOS) and total antioxidant capacity (TAC) in plasma were also examined. Furthermore, the number of healthy cells in the hippocampus's dentate gyrus (DG), CA1, and CA3 regions were identified using hematoxylin and eosin staining. Results The results indicated that the injection of Aβ1-42 in rats led to recognition memory and spatial memory impairments, as well as increased anxiety. This was accompanied by decreased total antioxidant capacity (TAC), increased total oxidative stress (TOS), and increased neuronal death. Conversely, cacao treatment in AD rats improved memory function, reduced anxiety, modulated oxidative stress balance, and decreased neuronal death. Conclusion The findings suggest that cacao's ability to improve the balance between oxidants and antioxidants and prevent neuronal loss may be the mechanism underlying its beneficial effect against AD-related cognitive and non-cognitive impairments.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Hassan NF, Ragab D, Ibrahim SG, Abd El-Galil MM, Hassan Abd-El-Hamid A, Hamed DM, Magdy William M, Salem MA. The potential role of Tirzepatide as adjuvant therapy in countering colistin-induced nephro and neurotoxicity in rats via modulation of PI3K/p-Akt/GSK3-β/NF-kB p65 hub, shielding against oxidative and endoplasmic reticulum stress, and activation of p-CREB/BDNF/TrkB cascade. Int Immunopharmacol 2024; 135:112308. [PMID: 38788447 DOI: 10.1016/j.intimp.2024.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Although colistin has a crucial antibacterial activity in treating multidrug-resistant gram-negative bacteria strains; it exhibited renal and neuronal toxicities rendering its use a challenge. Previous studies investigated the incretin hormones either glucose-dependent insulinotropic polypeptide (GIP) or glucagonlike peptide-1 (GLP-1) for their neuroprotective and nephroprotective effectiveness. The present study focused on investigating Tirzepatide (Tirze), a dual GLP-1/GIP agonist, as an adjuvant therapy in the colistin treatment protocol for attenuating its renal and neuronal complications. Rats were divided into; The normal control group, the colistin-treated group received colistin (300,000 IU/kg/day for 7 days; i.p.). The Tirze-treated group received Tirze (1.35 mg/kg on the 1,4,7thdays; s.c.) and daily colistin. Tirze effectively enhanced histopathological alterations, renal function parameters, and locomotor activity in rats. Tirze mechanistically acted via modulating various signaling axes evolved under the insult of phosphatidylinositol 3-kinases (PI3K)/phosphorylated protein kinase-B (p-Akt)/ glycogen synthase kinase (GSK)3-β hub causing mitigation of nuclear factor (NF)-κB (NF-κB) / tumor necrosis factor-α (TNF-α), increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ glutathione (GSH), downregulation of ER stress-related biomarkers (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)), antiapoptotic effects coupling with reduction of glial fibrillary acidic protein (GFAP) immunoreactivity and enhancement of phosphorylated c-AMP response element-binding (p-CREB) / brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) neuroprotective pathway. Briefly, Tirze exerts a promising role as adjuvant therapy in the colistin treatment protocol for protection against colistin's nephro- and neurotoxicity according to its anti-inflammatory, antioxidant, and antiapoptotic impacts besides its ability to suppress ER stress-related biomarkers.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Diaa Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Shaimaa G Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Dalia M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Maha A Salem
- Department of Pharmacology and Toxicology, pharmacy program, Saint Petersburg University in Cairo, Cairo, Egypt
| |
Collapse
|
9
|
Basir HS, Mirazi N, Komaki A, Hosseini A. Cacao consumption improves passive avoidance memory impairment in a rat model of Alzheimer's disease: the role of hippocampal synaptic plasticity and oxidative stress. Front Pharmacol 2024; 15:1379264. [PMID: 38756381 PMCID: PMC11096498 DOI: 10.3389/fphar.2024.1379264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) causes progressive loss of cognitive function and synaptic plasticity, which is the most common form of dementia. The present study was designed to scrutinize the effects of cacao on passive avoidance memory function and to identify the roles of hippocampal synaptic plasticity and oxidative stress in an AD rat model induced by unilateral intracerebroventricular (UICV) injection of amyloid-beta (Aβ). Methods: Oral administration of cacao (500 mg/kg/ day) was given for 2 consecutive months. A memory retention test was conducted 24 h after passive avoidance training was completed. Subsequently, the amplitude of population spike (PS) and slope of field excitatory postsynaptic potentials (fEPSPs) were assessed at hippocampal long-term potentiation (LTP) in perforant pathway-dentate gyrus (PP-DG) synapses. Moreover, total thiol group (TTG) and malondialdehyde (MDA) concentrations were evaluated in the plasma. Furthermore, compact Aβ plaques were detected in the hippocampal DG by performing Congo red staining. Results: As a result of AD induction, passive avoidance memory was impaired; also, reduced fEPSP slopes, PS amplitudes, and content of TTG, and increase in MDA levels in the rats were observed. In contrast, cacao treatment ameliorated passive avoidance memory impairment, improved hippocampal LTP impairment, modulated oxidative-antioxidative status, and delayed Aβ plaques production in AD rats. Disscussion: Conclusively, cacao alleviates Aβ-induced cognitive deficit, probably by the amelioration of hippocampal LTP impairment, modulation of oxidative-antioxidative status, and inhibition of Aβ plaque accumulation.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
10
|
Cuciniello R, Luongo D, Maurano F, Crispi S, Bergamo P. Dietary conjugated linoleic acid downregulates the AlCl 3-induced hyperactivation of compensatory and maladaptive signalling in the mouse brain cortex. Free Radic Biol Med 2024; 213:102-112. [PMID: 38218550 DOI: 10.1016/j.freeradbiomed.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Oxidative stress, hyperactivation of compensatory mechanisms (unfolded protein response, UPR; nuclear factor erythroid 2-related factor 2, Nrf2) and the stimulation of maladaptive response (inflammation/apoptosis) are interconnected pathogenic processes occurring during Alzheimer's disease (AD) progression. The neuroprotective ability of dietary Conjugated linoleic acid (CLAmix) in a mouse model of AlCl3-induced AD was recently described but, the effects of AlCl3 or CLAmix intake on these pathogenic processes are still unknown. The effects of dietary AlCl3 or CLAmix - alone and in combination - were examined in the brain cortex of twenty-eight BalbC mice divided into 4 groups (n = 7 each). The neurotoxic effects of AlCl3 were investigated in animals treated for 5 weeks with 100 mg/kg/day (AL). CLAmix supplementation (600 mg/kg bw/day) for 7 weeks (CLA) was aimed at evaluating its modulatory effects on the Nrf2 pathway while its co-treatment with AlCl3 during the last 5 weeks of CLAmix intake (CLA + AL) was used to investigate its neuroprotective ability. Untreated mice were used as controls. In the CLA group, the NADPH oxidase (NOX) activation in the brain cortex was accompanied by the modulation of the Nrf2 pathway. By contrast, in the AL mice, the significant upregulation of oxidative stress markers, compensatory pathways (UPR/Nrf2), proinflammatory cytokines (IL-6, TNFα) and the proapoptotic protein Bax levels were found as compared with control. Notably, in CLA + AL mice, the marked decrease of oxidative stress, UPR/Nrf2 markers and proinflammatory cytokines levels were associated with the significant increase of the antiapoptotic protein Bcl2. The involvement of NOX in the adaptive response elicited by CLAmix along with its protective effects against the onset of several pathogenic processes triggered by AlCl3, broadens the knowledge of the mechanism underlying the pleiotropic activity of Nrf2 activators and sheds new light on their potential therapeutic use against neurodegenerative disorders.
Collapse
Affiliation(s)
- R Cuciniello
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy; IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - D Luongo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, 83100, Italy
| | - F Maurano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, 83100, Italy
| | - S Crispi
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy
| | - P Bergamo
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy.
| |
Collapse
|
11
|
Hu GJ, Jiang XY, Du SY, Zhang K, Chen Z. miR-107-5p ameliorates neurological damage, oxidative stress, and immune responses in mice with Alzheimer's disease by suppressing the Toll-like receptor 4 (TLR4)/nuclear factor-kappaB(NF-κB) pathway. Kaohsiung J Med Sci 2024; 40:119-130. [PMID: 38305705 DOI: 10.1002/kjm2.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aβ (Aβ1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1β) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aβ1-40 and Aβ1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1β levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.
Collapse
Affiliation(s)
- Guang-Jun Hu
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Yang Jiang
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Si-Yu Du
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Kun Zhang
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhuo Chen
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|