1
|
Andonova V, Nikolova K, Iliev I, Georgieva S, Petkova N, Feizi-Dehnayebi M, Nikolova S, Gerasimova A. Spectral Characteristics, In Silico Perspectives, Density Functional Theory (DFT), and Therapeutic Potential of Green-Extracted Phycocyanin from Spirulina. Int J Mol Sci 2024; 25:9170. [PMID: 39273119 PMCID: PMC11394851 DOI: 10.3390/ijms25179170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Phycocyanin (PC) is a naturally occurring green pigment in Spirulina. It was extracted by ultrasonic extraction using green technology, and its structure was studied using IR- and NMR-spectroscopy. Spectral data confirmed the PC structure. This study also involves an in silico assessment of the diverse applications of green pigment PC. Utilizing QSAR, PreADME/T, SwissADME, and Pro-Tox, this study explores the safety profile, pharmacokinetics, and potential targets of PC. QSAR analysis reveals a favorable safety profile, with the parent structure and most metabolites showing no binding to DNA or proteins. PreADME/T indicates low skin permeability, excellent intestinal absorption, and medium permeability, supporting oral administration. Distribution analysis suggests moderate plasma protein binding and cautious blood-brain barrier permeability, guiding formulation strategies. Metabolism assessments highlight interactions with key cytochrome P450 enzymes, influencing drug interactions. Target prediction analysis unveils potential targets, suggesting diverse therapeutic effects, including cardiovascular benefits, anti-inflammatory activities, neuroprotection, and immune modulation. Based on the in silico analysis, PC holds promise for various applications due to its safety, bioavailability, and potential therapeutic benefits. Experimental validation is crucial to elucidate precise molecular mechanisms, ensuring safe and effective utilization in therapeutic and dietary contexts. DFT calculations, including geometry optimization, MEP analysis, HOMO-LUMO energy surface, and quantum reactivity parameters of the PC compound, were obtained using the B3LYP/6-311G(d,p) level. This integrated approach contributes to a comprehensive understanding of PC's pharmacological profile and informs future research directions.
Collapse
Affiliation(s)
- Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Ivelin Iliev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Svetlana Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Mehran Feizi-Dehnayebi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran P.O. Box 19938-93973, Iran
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv Paisii Hilendarski, 4000 Plovdiv, Bulgaria
| | - Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| |
Collapse
|
2
|
Mazurkeviciute A, Matulyte I, Ivaskiene M, Zilius M. Modeling, the Optimization of the Composition of Emulgels with Ciclopirox Olamine, and Quality Assessment. Polymers (Basel) 2024; 16:1816. [PMID: 39000671 PMCID: PMC11244097 DOI: 10.3390/polym16131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The design and development of pharmaceutical products require specific knowledge, time, and investment. Response surface methodology (RSM) is a widely used technique in the design of experiments (DoE) to optimize various processes and products. The aim of this study was to model and produce experimental emulgels containing 1% ciclopirox olamine and to evaluate their physical, rheological, and mechanical properties and their ability to release ciclopirox olamine. The objective was to optimize the composition of the experimental emulgel containing 1% ciclopirox olamine by applying a central composite design based on selected criteria. The surfactant (polysorbate 80) had the greatest influence on the physical, rheological, and mechanical properties of the emulgels, as well as on the release of ciclopirox olamine from these systems. During the optimization process, an emulgel of optimal composition was generated containing 38.27% mineral oil, 6.56% polysorbate 80, and 55.17% hydrogel containing 1% ciclopirox olamine, meeting specified criteria (dependent variables) including the maximum flux of ciclopirox olamine, the minimum sol-gel transition temperature (Tsol/gel), and the minimum particle size of the oil phase. The oil phase particle size (D50) of this emulgel was determined to be 0.337 µm, the system Tsol/gel was 9.1 °C, and the flux of ciclopirox olamine from this gel matrix was calculated to be 1.44 mg/cm2. This emulgel of optimal composition could be used to treat fungal skin diseases.
Collapse
Affiliation(s)
- Agne Mazurkeviciute
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Inga Matulyte
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Marija Ivaskiene
- Dr. L. Kraučeliūnas Small Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania;
| | - Modestas Zilius
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| |
Collapse
|
3
|
de Souza FFP, Castro-Silva II, Andrade FK, Mattos ALA, de Sousa Lopes M, da Silva Barroso W, de Souza BWS, de Sá Moreira de Souza-Filho M, da Silva ALC. Emulgel based on fish skin collagen-microalgae-silver increased neovascularization and re-epithelialization of full thickness burn in rats. J Biomed Mater Res B Appl Biomater 2024; 112:e35399. [PMID: 38533823 DOI: 10.1002/jbm.b.35399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO3). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.
Collapse
Affiliation(s)
- Francisco Fábio Pereira de Souza
- Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do PIci, Fortaleza, Ceará, Brazil
| | | | - Fábia Karine Andrade
- Biomaterials and Bioproducts Research Laboratory, Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | | | | | - Wallady da Silva Barroso
- Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do PIci, Fortaleza, Ceará, Brazil
| | | | | | - André Luis Coelho da Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do PIci, Fortaleza, Ceará, Brazil
| |
Collapse
|
4
|
Tello P, Santos J, Calero N, Trujillo-Cayado LA. Formulation and Characterization of Sustainable Algal-Derived Nanoemulgels: A Green Approach to Minimize the Dependency on Synthetic Surfactants. Polymers (Basel) 2024; 16:194. [PMID: 38256993 PMCID: PMC10819741 DOI: 10.3390/polym16020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Phycocyanin (PC), a natural protein that is very interesting from the medical point of view due to its potent antioxidant and anti-inflammatory properties, is obtained from algae. This compound is gaining positions for applications in the food industry. The main objective of this work was to obtain nanoemulgels formulated with PC and k-carrageenan (a polymer that is obtained from algae as well). An optimization of the processing parameters (homogenization pressure and number of cycles) and the ratio of PC and a well-known synthetic surfactant (Tween 80) was developed using response surface methodology. The results of this optimization were 25,000 psi, seven cycles, and a 1:1 ratio of PC/Tween80. However, the necessity for the incorporation of a polymer that plays a thickener role was observed. Hence, k-carrageenan (k-C) was used to retard the creaming process that these nanoemulsions suffered. The incorporation of this biopolymer provoked the creation of a network that showed gel-type behavior and flow indexes very close to zero. Thanks to the combined use of these two sustainable and algae-obtained compounds, stable nanoemulgels were obtained. This work has proved that the combined use of PC and k-C has emerged as a sustainable alternative to stabilize dispersed systems for the food industry.
Collapse
Affiliation(s)
- Patricia Tello
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, 41011 Sevilla, Spain;
| | - Jenifer Santos
- Departamento de Ciencias de la Salud y Biomédicas, Facultad de Ciencias de la Salud, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Sevilla, Spain
| | - Nuria Calero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Profesor García González s/n, 41012 Sevilla, Spain;
| | - Luis A. Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, 41011 Sevilla, Spain;
| |
Collapse
|