1
|
Lin CY, Chang YT, Chung YK, Alalaiwe A, Yu HP, Fang JY. Dual-membrane bioinspired nanocarriers for targeted therapy of MRSA-induced acute lung injury and bacteremia. J Mater Chem B 2025. [PMID: 40261186 DOI: 10.1039/d4tb02742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Bioinspired nanoparticles enhance the targeting of specific organs by facilitating interactions and communication at the nano-bio interface. Combining human neutrophil and lung epithelial cell membranes for nanoparticle cloaking offers distinct advantages in binding to bacteria and pulmonary epithelium, thus targeting infection-induced inflammatory areas. This study aimed to develop rifampicin-loaded biomimetic nanocarriers by wrapping a polymeric core with dual membranes derived from neutrophils and A549 cells, inheriting the membrane characteristics of the native cells. To evaluate the therapeutic efficacy of these nanocarriers, methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) and bacteremia models were established in mice. The hybrid membrane-coated nanoparticles exhibited an average diameter of 191 nm and a nearly neutral surface charge of -2.7 mV. Zeta potential measurements, gel electrophoresis, and scanning electron microscopy (SEM) confirmed the successful decoration of the membranes on the nanoparticles. The dual membrane-coated nanoparticles were readily and rapidly ingested by lung epithelial cells within five minutes, demonstrating superior cellular uptake compared to those coated with a single membrane. SEM analysis showed significant adherence of the hybrid membrane-coated nanoparticles to the MRSA surface. The rifampicin-loaded nanocarriers effectively eradicated MRSA in its planktonic, biofilm, and intracellular forms. In vivo biodistribution studies in ALI mice revealed that the hybrid membrane-coated nanoparticles effectively targeted inflamed lungs, showing a two-fold increase in lung accumulation compared to the unfunctionalized nanoparticles. This targeted delivery significantly reduced the severity of lung damage caused by ALI and bacteremia, including MRSA burden, cytokine/chemokine expression, alveolar edema, and immune cell infiltration. The bioinspired nanocarriers improved the pulmonary targeting of inflamed sites and neutralized the proinflammatory mediators and toxins in the injured lung. No significant toxicity was observed in the healthy mice receiving the nanocarriers. Thus, targeted biomimetic nanocarriers, utilizing antibacterial and anti-inflammatory strategies, show promising benefits for treating pulmonary injury.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
- Research Center for Food and Cosmetic Safety and Center for Drug Research and Development, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
2
|
Wang Y, Yang J, Amier Y, Yuan D, Xun Y, Yu X. Advancements in Nanomedicine for the Diagnosis and Treatment of Kidney Stones. Int J Nanomedicine 2025; 20:1401-1423. [PMID: 39925679 PMCID: PMC11805677 DOI: 10.2147/ijn.s504318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Kidney stones constitute a common condition impacting the urinary system. In clinical diagnosis and management, traditional surgical interventions and pharmacological treatments are primarily utilized; however, these methods possess inherent limitations. Presently, the field of nanomedicine is undergoing significant advancements. The application of nanomaterials in biosensors enables the accurate assessment of urinary ion composition. Furthermore, contrast agents developed from these materials can improve the signal-to-noise ratio and enhance image clarity. By mitigating oxidative stress-induced cellular damage, nanomaterials can inhibit the formation of kidney stones and enhance the efficacy of drug delivery as effective carriers. Additionally, by modifying the physical and chemical properties of bacteria, nanomaterials can effectively eliminate bacterial presence, thereby preventing severe complications. This review explores the advancements in nanomaterials technology related to the early detection of risk factors, clinical diagnosis, and treatment of kidney stones and their associated complications.
Collapse
Affiliation(s)
- Yongqi Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Junyi Yang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yirixiatijiang Amier
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Dongfeng Yuan
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yang Xun
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiao Yu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Wang Y, Yang J, Zhang Y, Zhou J. Focus on Mitochondrial Respiratory Chain: Potential Therapeutic Target for Chronic Renal Failure. Int J Mol Sci 2024; 25:949. [PMID: 38256023 PMCID: PMC10815764 DOI: 10.3390/ijms25020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The function of the respiratory chain is closely associated with kidney function, and the dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure. The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the "toxic respiratory chain", and targeting the clearance of mitochondrial reactive oxygen species are potential therapies for treating chronic kidney failure. These treatments have shown promising results in slowing fibrosis and inflammation progression and improving kidney function in various animal models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This review integrated research related to the mitochondrial respiratory chain and chronic kidney failure, primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and promoted the development of drugs targeting the mitochondrial respiratory chain.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China; (Y.W.); (J.Y.); (Y.Z.)
| |
Collapse
|