1
|
Forouharshad M, Raspa A, Fortino G, Ciulla MG, Farazdaghi A, Stolojan V, Stendardo L, Bracco S, Gelain F. Biomimetic electrospun PVDF/self-assembling peptide piezoelectric scaffolds for neural stem cell transplantation in neural tissue engineering. RSC Adv 2024; 14:21277-21291. [PMID: 38974226 PMCID: PMC11225063 DOI: 10.1039/d4ra02309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Piezoelectric materials can provide in situ electrical stimulation without external chemical or physical support, opening new frontiers for future bioelectric therapies. Polyvinylidene fluoride (PVDF) possesses piezoelectricity and biocompatibility, making it an electroactive biomaterial capable of enhancing bioactivity through instantaneous electrical stimulation, which indicates significant potential in tissue engineering. In this study, we developed electroactive and biomimetic scaffolds made of electrospun PVDF and self-assembling peptides (SAPs) to enhance stem cell transplantation for spinal cord injury regeneration. We investigated the morphology and crystalline polymorphs of the electrospun scaffolds. Morphological studies demonstrated the benefit of using mixed sodium dodecyl sulfate (SDS) and SAPs as additives to form thinner, uniform, and defect-free fibers. Regarding electroactive phases, β and γ phases-evidence of electroactivity-were predominant in aligned scaffolds and scaffolds modified with SDS and SAPs. In vitro studies showed that neural stem cells (NSCs) seeded on electrospun PVDF with additives exhibited desirable proliferation and differentiation compared to the gold standard. Furthermore, the orientation of the fibers influenced scaffold topography, resulting in a higher degree of cell orientation in fiber-aligned scaffolds compared to randomly oriented ones.
Collapse
Affiliation(s)
- Mahdi Forouharshad
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Andrea Raspa
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Giuseppe Fortino
- Department of Biotechnology and Bioscience, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Maria Gessica Ciulla
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| | - Arman Farazdaghi
- Chemical and Biomolecular Engineering Department, Whiting School of Engineering, Johns Hopkins University MD USA
| | - Vlad Stolojan
- Advanced Technology Institute, Electrical and Electronic Engineering, University of Surrey Guildford GU2 7XH UK
| | - Luca Stendardo
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| |
Collapse
|
2
|
Ramirez-Labrada A, Santiago L, Pesini C, Arrieta M, Arias M, Calvo Pérez A, Ciulla MG, Forouharshad M, Pardo J, Gálvez EM, Gelain F. Multiparametric in vitro and in vivo analysis of the safety profile of self-assembling peptides. Sci Rep 2024; 14:4395. [PMID: 38388659 PMCID: PMC10883997 DOI: 10.1038/s41598-024-54051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Self-assembling peptides (SAPs) have gained significant attention in biomedicine because of their unique properties and ability to undergo molecular self-assembly driven by non-covalent interactions. By manipulating their composition and structure, SAPs can form well-ordered nanostructures with enhanced selectivity, stability and biocompatibility. SAPs offer advantages such as high chemical and biological diversity and the potential for functionalization. However, studies concerning its potentially toxic effects are very scarce, a limitation that compromises its potential translation to humans. This study investigates the potentially toxic effects of six different SAP formulations composed of natural amino acids designed for nervous tissue engineering and amenable to ready cross-linking boosting their biomechanical properties. All methods were performed in accordance with the relevant guidelines and regulations. A wound-healing assay was performed to evaluate how SAPs modify cell migration. The results in vitro demonstrated that SAPs did not induce genotoxicity neither skin sensitization. In vivo, SAPs were well-tolerated without any signs of acute systemic toxicity. Interestingly, SAPs were found to promote the migration of endothelial, macrophage, fibroblast, and neuronal-like cells in vitro, supporting a high potential for tissue regeneration. These findings contribute to the development and translation of SAP-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Ariel Ramirez-Labrada
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.
- Nanotoxicology and Immunotoxicology Unit (UNATI), Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain.
| | | | - Cecilia Pesini
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| | - Marta Arrieta
- WorldPathol Global United S.A. (WGUSA), Zaragoza, Spain
| | - Maykel Arias
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| | - Adanays Calvo Pérez
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Maria Gessica Ciulla
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Mahdi Forouharshad
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Julian Pardo
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Eva M Gálvez
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
- Tissue Engineering Unit-ISBREMIT-IRCCS Casa Sollievo Della Sofferenza, Via Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
3
|
Ciulla MG, Massironi A, Sugni M, Ensign MA, Marzorati S, Forouharshad M. Recent Advances in the Development of Biomimetic Materials. Gels 2023; 9:833. [PMID: 37888406 PMCID: PMC10606425 DOI: 10.3390/gels9100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications. Fast-paced 3D printing and artificial intelligence, nevertheless, collide with reality: How difficult can it be to build reproducible biomimetic materials at a real scale in line with the complexity of living systems? Nowadays, science is in urgent need of bioengineering technologies for the practical use of bioinspired and biomimetics for medicine and clinics.
Collapse
Affiliation(s)
- Maria G. Ciulla
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Matthew A. Ensign
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Mahdi Forouharshad
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|