1
|
Carmignani A, Yamazaki T, Battaglini M, Vu CQ, Marino A, Takayanagi-Kiya S, Kiya T, Armirotti A, Di Fonzo A, Arai S, Ciofani G. Cellular Activity Modulation Mediated by Near Infrared-Irradiated Polydopamine Nanoparticles: In Vitro and Ex Vivo Investigation. ACS NANO 2025. [PMID: 40270300 DOI: 10.1021/acsnano.5c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The precise control of cell activity is crucial for understanding and potentially treating many disorders. Focusing on neurons and myotubes, recent advancements in nanotechnology have introduced photoresponsive nanoparticles as an alternative tool for modulating cell function with high spatial and temporal resolution. This approach offers a noninvasive alternative to traditional stimulation techniques, reducing potential tissue damage and improving the specificity of cell activation. Here, we introduce an approach envisioning fully organic polydopamine nanoparticles (PDNPs) to remotely modulate the activity of differentiated SH-SY5Y cells and differentiated C2C12 cells, via near-infrared (NIR) laser stimulation. Confocal microscopy imaging revealed the possibility of thermally activating individual neuron-like cells, eliciting a significant cellular response characterized by the generation of calcium transients and the subsequent release of the neurotransmitter acetylcholine. Similarly, we demonstrated the possibility of precisely triggering the muscle contraction of single myotubes. Additionally, we investigated the antioxidant properties of PDNPs, demonstrating their capacity to prevent an increase in oxidative stress levels related to an increase in intracellular temperature. Moreover, proteomic analysis revealed that a PDNP treatment could positively affect neuronal plasticity and nervous system maturation, besides promoting muscle growth and preserving its functional integrity, underscoring its potential to support both neural and musculoskeletal development. Eventually, the effect of the NIR laser irradiation in the presence of PDNPs in neuron-like cells was successfully evaluated ex vivo on brains of Drosophila melanogaster, genetically modified to express the fluorescent calcium indicator jGCaMP7c.
Collapse
Affiliation(s)
- Alessio Carmignani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Takeru Yamazaki
- Kanazawa University, WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Cong Quang Vu
- Kanazawa University, WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Seika Takayanagi-Kiya
- Kanazawa University, Graduate School of Natural Science & Technology, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taketoshi Kiya
- Kanazawa University, Graduate School of Natural Science & Technology, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Andrea Di Fonzo
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Satoshi Arai
- Kanazawa University, WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
2
|
Ma Y, Xiong L, Qiu W, Dong Z, Wei X, Li J, Fu Y, Xiong J, Wu H. Growth of NIR-II-Responsive Gold Nanobipyramids with Improved Yield and a Study of Their Application in Cancer Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40265678 DOI: 10.1021/acs.langmuir.4c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Gold nanobipyramids (Au NBPs), as a novel and emerging plasmonic nanomaterial, have shown larger local electric field enhancements, larger optical cross-sections, and higher refractive index sensitivity compared to other plasmonic nanoparticles. Besides, their localized surface plasmon resonance (LSPR) absorption can be tailored to cover the entire NIR-II light region, which is crucial for clinical cancer treatment. However, strategies to synthesize Au NBPs with an NIR-II light response still have several disadvantages, such as tedious procedures and the use of hazardous chemical substances. In this work, we used a seed-mediated growth method and explored new strategies to synthesize high-yield Au NBPs with an NIR-II light response, especially in the region above 1030 nm, by regulating the conditions during Au seed growth. The yield of Au NBPs with a response at 1060 nm has been improved by 5-fold and 6-fold compared to previous seed-mediated growth methods when 230 μL of sodium citrate or a controlled temperature of 45 °C were used for Au seed growth with an Au seed solution containing 125 μL of NaBH4. The influence mechanism of these factors on Au seed growth and the yield of Au NBPs has been explored in detail. Furthermore, the photodynamic and photothermal behaviors of Au NBPs with LSPR absorption at 1060 nm have been investigated, and the results indicate that Au NBPs have great potential in photothermal therapy. Besides, Au NBPs have been proven to induce immunogenic cell death (ICD), indicating their potential in immunotherapy. This work may provide a new idea for the synthesis and biomedical applications of Au NBPs with an NIR-II response.
Collapse
Affiliation(s)
- Yujie Ma
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai, University of Medicine and Health Sciences, Shanghai 201318, China
| | - Liangbin Xiong
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai, University of Medicine and Health Sciences, Shanghai 201318, China
| | - Wenbin Qiu
- Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhixin Dong
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xindong Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jilei Li
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Fu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai, University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jie Xiong
- Department of Gastroenterology, Tongji Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai, University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
3
|
Mantry S, Silakabattini K, Das PK, Sankaraiah J, Barik CS, Panda S, Wahab S, Khalid M. Silk fibroin: An innovative protein macromolecule-based hydrogel/ scaffold revolutionizing breast cancer treatment and diagnosis - Mechanisms, advancements, and targeting capabilities. Int J Biol Macromol 2025; 309:142870. [PMID: 40194579 DOI: 10.1016/j.ijbiomac.2025.142870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Breast cancer (BC) is recognized as the most typical cancer diagnosed in women globally, posing significant public health challenges. Several protein-based biological macromolecules have been investigated for drug delivery in BC treatment due to biological and tunable mechanical properties. Silk fibroin (SF)-based hydrogel/scaffold is gaining attraction in BC therapy. The functionalization of SF with folic acid or antibodies enables targeted delivery to BC cells that overexpress folate receptors. In this context, this perspective article explored the potential biological activity, targeting capacity, functionalization, and drug carrier abilities of SF-based hydrogel for BC therapy. In addition, the article exclusively delves into the potential molecular pathways of SF-based hydrogel/ scaffolds for targeted therapy in BC. The article also summarizes the perspectives on the diagnosis abilities of SF-based hydrogel/ scaffolds in BC treatment, making it the first instance of such perspective literature. This insightful literature presents practical guidance for researchers, clinicians, and scientists eager to investigate the innovative biological applications and targeting potential of SF-based hydrogels and scaffolds in advancing breast cancer treatments.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmacy, Sarala Birla University, Birla Knowledge City, P.O.- Mahilong, Purulia Road, Ranchi 835103, Jharkhand, India.
| | - Kotaiah Silakabattini
- Department of Pharmacognosy, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur 522019, Andhra Pradesh, India
| | - Prabhat Kumar Das
- Department of Pharmacology, GRY Institute of Pharmacy, Borawan, Khargone, Madhya Pradesh 451228, India
| | - Jonna Sankaraiah
- Department of Process Development, Medytox Inc., 102, Osongsaengmyeong 4-ro, Osong-eup, Heugdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chandra Shekhar Barik
- Department of Pharmacology, School of Pharmacy, DRIEMS University, Kotasahi, Kairapari, Tangi, Cuttack, Odisha Pin-754022, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India..
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| |
Collapse
|
4
|
Lorenzoni S, Rodríguez-Nogales C, Blanco-Prieto MJ. Targeting tumor microenvironment with RGD-functionalized nanoparticles for precision cancer therapy. Cancer Lett 2025; 614:217536. [PMID: 39924081 DOI: 10.1016/j.canlet.2025.217536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The need for precision therapies arises from the complexities associated with high-risk types of cancer, due to their aggressiveness and resistance to treatment. These diseases represent a global issue that requires transversal strategies involving cooperation among oncology specialists and experts from related fields, including nanomedicine. Nanoparticle-mediated active targeting of tumors has proven to be a revolutionary approach to address the most challenging neoplasms by overcoming the poor permeation at tumor site of untargeted, and nowadays questioned, strategies that rely solely on Enhanced Permeability and Retention (EPR) effects. The decoration of nanoparticles with Arg-Gly-Asp (RGD) peptides, which selectively target integrins on the cell membrane, marks a turning point in tumor microenvironment (TME) targeted strategies, enabling precision and efficiency in the delivery of chemotherapeutics. This review delves into the intricacies of the TME's features and targetable components (i.e. integrins), and the development of RGDs for nanoparticles' functionalization for active TME targeting. It provides a translational perspective on the integration of RGD-functionalized nanoparticles in oncology, highlighting their potential to overcome current therapeutic challenges, particularly in precision medicine. The current landscape of targeted nanomedicines in the clinic, and the development of RGD-nanomedicine for pediatric cancers are also discussed.
Collapse
Affiliation(s)
- Sara Lorenzoni
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, Pamplona, 31008, Pamplona, Spain; Cancer Center Clínica Universidad de Navarra (CCUN), Avenida Pio XII 36, 31008, Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, Pamplona, 31008, Pamplona, Spain; Cancer Center Clínica Universidad de Navarra (CCUN), Avenida Pio XII 36, 31008, Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, Pamplona, 31008, Pamplona, Spain; Cancer Center Clínica Universidad de Navarra (CCUN), Avenida Pio XII 36, 31008, Pamplona, Spain.
| |
Collapse
|
5
|
Valdivieso E, Zabala M, Muñoz Noval A, López-Méndez R, Carmona N, Espinosa A, García García FJ, Boulahya K, Lucas JA, Biancotto L, Amador U, Azcondo MT, Hurtado-Marcos C. Hyperthermic Core-Shell Silver-Gold Nanoparticles: Green Synthesis and Adsorption-Uptake by Macrophages, Fibroblasts and Cancer Cells. ChemistryOpen 2025; 14:e202400459. [PMID: 39967444 DOI: 10.1002/open.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Gold-coated silver nanoparticles (Ag@AuNPs) are synthesized by green synthesis using Vaccinium corymbosum as reducing agent. The obtained Ag@AuNPs present a core-shell structure with nanostar shape. The absorption spectrum of these nanoparticles shows a prominent band centred at 680 nm, within the optimal range for photothermal applications. Dispersions of Ag@AuNPs in water, 1.87 1010 NPs/mL, reach a temperature of 44.3 °C under laser excitation in 10 minutes, which is suitable for hyperthermia therapy. The internalization of Ag@AuNPs, at a concentration of 3 108 NPs/ml, by macrophages (Raw 264.7), human fibroblasts (Hs27), and cancer cells (4T1) is confirmed by transmission electron microscopy. Cytotoxicity studies demonstrate that at this concentration the cells are viable.
Collapse
Affiliation(s)
- E Valdivieso
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| | - M Zabala
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - A Muñoz Noval
- Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040, Madrid, Spain
- IMDEA Nanociencia c/ Faraday, 9, Madrid, 28049, Spain
| | | | - N Carmona
- Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040, Madrid, Spain
| | - A Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - F J García García
- ICTS-Centro Nacional de Microscopía Electrónica F. CC. Químicas, UCM Av. Complutense S/N, 28040-, Madrid, Spain
| | - K Boulahya
- Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - J A Lucas
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| | - L Biancotto
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - U Amador
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - M T Azcondo
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - C Hurtado-Marcos
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| |
Collapse
|
6
|
Masanam HB, Muthuraman J, Chandra B, Kottapalli VNSM, Chandra SS, Gupta PK, Narasimhan AK. Investigation on the heating effects of intra-tumoral injectable magnetic hydrogels (IT-MG) for cancer hyperthermia. Biomed Phys Eng Express 2025; 11:025036. [PMID: 39869935 DOI: 10.1088/2057-1976/adaec6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, Rf-responsive materials is required to convert Rf radiation into localized heat efficiently. Nanoparticles capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance. In this study, we developed and evaluated an Intra-tumoral injectable magnetic hydrogel (IT-MG) composed of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) impregnated in low molecular weight Hyaluronic Acid (HA) forming HA-SPIONs. Our systematic investigation revealed that HA-SPIONs exposed to Rf radiation significantly increased temperature, reaching up to 50 °C. Further testing in tissue-mimicking phantom models also showed consistent heating, with temperatures stabilizing at 43 °C, ideal for localized hyperthermia. The ability of HA-SPIONs to act as an effective localized heating agent when exposed to 27 MHz Rf radiation, reaching apoptosis-inducing temperature, has not been previously reported. In conclusion, synergistic effects of IT-MG in bothin-vitroand tumor-mimicking phantom models demonstrate improved and localized hyperthermia, facilitating adjuvant cancer treatment.
Collapse
Affiliation(s)
- Hema Brindha Masanam
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Janani Muthuraman
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Bharath Chandra
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, United States of America
| | | | - Sai Sarath Chandra
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
- Computer Science Engineering, Campbusvile University, Kentucky, KY 42718, United States of America
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Wisconsin, 3200 North Cramer Street, Milwaukee, WI 53211, United States of America
- Acrofluidic Innovations Private Limited, Chennai 600 059, Tamil Nadu, India
| |
Collapse
|
7
|
Wu AL, Wu AF, Chen CY, Moreno RLH, Wu JL, Wong PC. Laser-Induced Photothermal Hydrogels Promote the Proliferation of MC3T3-E1 Preosteoblasts for Enhanced Bone Healing. J Funct Biomater 2025; 16:63. [PMID: 39997597 PMCID: PMC11856975 DOI: 10.3390/jfb16020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
The nonunion and delayed union of bones are common challenges in orthopedic surgery, even when bone alignment is correct and sufficient mechanical stability is provided. To address this, artificial bone grafts are often applied to fracture gaps or defect sites to promote osteogenesis and enhance bone healing. In this study, we developed an alginate-based hydrogel incorporating gold nanoparticles (AuNPs) to enhance cell proliferation and facilitate bone healing through a photothermal effect induced by near-infrared (NIR) laser irradiation. The temperature was controlled by adjusting the AuNP content. The hydrogel's properties were characterized and cell viability was assessed. Our results indicate that while the incorporation of AuNPs slightly disrupted the hydrogel's cross-linking network at low concentrations, cell viability remained unaffected across both low and high AuNP contents. These findings suggest that this photothermal hydrogel holds great promise for orthopedic applications to improve bone healing.
Collapse
Affiliation(s)
- Audrey L. Wu
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan (A.F.W.)
- Morrison Academy Taipei, New Taipei 24449, Taiwan
| | - Abigail F. Wu
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan (A.F.W.)
- Morrison Academy Taipei, New Taipei 24449, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ruaina Lily Hope Moreno
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan (A.F.W.)
| | - Jia-Lin Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan (A.F.W.)
| |
Collapse
|
8
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
9
|
Gadeval A, Anup N, Pawar B, Mule S, Otavi S, Sahu R, Kumar Tekade R. Gold-thiol-beaded albumin nanoparticles for chemo-combined pulsatile plasmonic laser therapy of Rheumatoid arthritis in rat model. Int J Pharm 2024; 667:124882. [PMID: 39471886 DOI: 10.1016/j.ijpharm.2024.124882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory immune disease that causes synovial membrane inflammation and destruction of articular cartilage. Traditionally, methotrexate is a first-line drug for RA treatment. However, its therapeutic benefits are insufficient. Pulsatile Plasmonic laser therapy (PPLT) has recently emerged as a localized and new-generation intervention for RA. This investigation reports the development of nanoGold-thiol-beaded albumin nanoparticles containing Leflunomide (GTBA-NP-L; 54 nm, PDI: 0.15 and entrapment efficiency: >90 %) for treating RA in an arthritic rat model. Upon irradiation of the plasmonic laser, the nanoGold component of GTBA-NP-L showed a local thermogenic effect (1.5 W/cm2 for 5 mins: ∼45 °C). This local thermal effect enhances drug release (1.5-fold) while co-delivering heat and antiarthritic leflunomide at inflamed RA joints site. In vitro and in vivo studies demonstrated significant antiarthritic effects of GTBA-NP-L, accompanied by reduced inflammatory stress in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells and antigen-induced arthritis (AIA) rat model. GTBA-NP-L treatment significantly reduced the cell viability (49.66 ± 2.46 %), apoptosis (83.36 ± 4.30 %), cell cycle arrest (38.28 ± 2.85 %), ROS and Nitrite stress levels (178.92 ± 19.79 %), and suppressed pro-inflammatory cytokines (TNF-α: 4.81, IL-6: 3.07 and IL-1β: 4.46-fold). In the arthritic rat, GTBA-NP-L treatment reduced inflammation, paw edema (1.89-fold), pain perception (45-48 %), and impacted hematological (Hb and RBCs: 12-15 %, WBCs: 30-32 %), serological (RF: 50-54 %, CRP: 40-47 %), and radiological parameters. Conclusively, the study demonstrates that the chemo-combined Pulsatile Plasmonic laser therapy showed superior efficacy as compared to individual treatments, suggesting GTBA-NP-L as a potential therapeutic candidate for rheumatoid arthritis.
Collapse
Affiliation(s)
- Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neelima Anup
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shubham Mule
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Sahu
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
10
|
Verma J, Kumar C, Sharma M, Saxena S. Biotechnological advances in microbial synthesis of gold nanoparticles: Optimizations and applications. 3 Biotech 2024; 14:263. [PMID: 39387004 PMCID: PMC11458872 DOI: 10.1007/s13205-024-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the eco-friendly and cost-effective biosynthesis of gold nanoparticles (AuNPs) in viable microorganisms, focusing on microbes-mediated AuNP biosynthesis. This process suits agricultural, environmental, and biomedical applications, offering renewable, eco-friendly, non-toxic, sustainable, and time-efficient methods. Microorganisms are increasingly used in green technology, nanotechnology, and RNAi technology, but several microorganisms have not been fully identified and characterized. Bio-nanotechnology offers eco-friendly and sustainable solutions for nanomedicine, with microbe-mediated nanoparticle biosynthesis producing AuNPs with anti-oxidation activity, stability, and biocompatibility. Ultrasmall AuNPs offer rapid distribution, renal clearance, and enhanced permeability in biomedical applications. The review explores nano-size dependent biosynthesis of AuNPs by bacteria, fungi, and viruses revealing their non-toxic, non-genotoxic, and non-oxidative properties on human cells. AuNPs with varying sizes and shapes, from nitrate reductase enzymes, have shown potential as a promising nano-catalyst. The synthesized AuNPs, with negative charge capping molecules, have demonstrated antibacterial activity against drug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii strains, and were non-toxic to Vero cell lines, indicating potential antibiotic resistance treatments. A green chemical method for the biosynthesis of AuNPs using reducing chloroauric acid and Rhizopus oryzae protein extract has been described, demonstrating excellent stability and strong catalytic activity. AuNPs are eco-friendly, non-toxic, and time-efficient, making them ideal for biomedical applications due to their antioxidant, antidiabetic, and antibacterial properties. In addition to the biomedical application, the review also highlights the role of microbially synthesized AuNPs in sustainable management of plant diseases, and environmental bioremediation.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Chitranjan Kumar
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - Monica Sharma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
11
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
12
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
13
|
Park S, Nguyen VP, Wang X, Paulus YM. Gold Nanoparticles for Retinal Molecular Optical Imaging. Int J Mol Sci 2024; 25:9315. [PMID: 39273264 PMCID: PMC11395175 DOI: 10.3390/ijms25179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging.
Collapse
Affiliation(s)
- Sumin Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Yannis M. Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
15
|
Rubio-Camacho M, Cuestas-Ayllón C, Torres-Herrero B, Martínez-Tomé MJ, de la Fuente JM, Mateo CR. Harnessing the power of thermosensitive liposomes with gold nanoprisms and silica for controlled drug delivery in combined chemotherapy and phototherapy. RSC Adv 2024; 14:23073-23082. [PMID: 39040708 PMCID: PMC11261576 DOI: 10.1039/d4ra03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
In recent years, the scientific community has tried to address the treatment of complex diseases such as cancer in a more appropriate and promising way. Regarding this and benefiting from the unique optical properties of gold nanoprisms (AuNPRs), the physicochemical properties of thermosensitive liposomes (TSLs), and the tunable drug encapsulation and release properties of silica nanoparticles (BioSi@NPs), this study has developed two nanoformulations. These nanoformulations have the potential to integrate chemotherapy and photothermal therapy within a single entity. Once their components were synthesized and characterized separately, two strategies were taken in order to develop these multifunctional nanoformulations: (1) covalent binding of AuNPRs to TSLs and (2) co-encapsulation of both components within BioSi@NPs, without modifying the optical and physicochemical properties of AuNPRs and TSLs. Finally, the suitability of both nanoformulations to carry and release hydrophilic drugs when triggered by a 1064 nm NIR laser has been explored by using the fluorescent probe 5(6)-carboxyfluorescein (CF) as a hydrophilic drug model. Different laser power and time of exposure were also tested evidencing that hydrophilic drugs were only released from TSLs in the presence of AuNPRs and that the drug release profile was dependent on the type of nanoformulation and irradiation conditions used. In conclusion, these multifunctional nanoformulations exhibit promising potential for controlled drug delivery in combined chemotherapy and phototherapy, with the capability to precisely control the release kinetics based on specific therapeutic needs.
Collapse
Affiliation(s)
- Marta Rubio-Camacho
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| | - Carlos Cuestas-Ayllón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - C Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| |
Collapse
|
16
|
Oehler JB, Rajapaksha W, Albrecht H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J Pers Med 2024; 14:723. [PMID: 39063977 PMCID: PMC11278299 DOI: 10.3390/jpm14070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration.
Collapse
Affiliation(s)
- Josephine B. Oehler
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Weranga Rajapaksha
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
17
|
Tian X, Yuan Y. Impacts of polyethylene glycol (PEG) dispersity on protein adsorption, pharmacokinetics, and biodistribution of PEGylated gold nanoparticles. RSC Adv 2024; 14:20757-20764. [PMID: 38952930 PMCID: PMC11216039 DOI: 10.1039/d4ra03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
PEGylated gold nanoparticles (PEG-AuNPs) are widely used in drug delivery, imaging and diagnostics, therapeutics, and biosensing. However, the effect of PEG dispersity on the molecular weight (M W) distribution of PEG grafted onto AuNP surfaces has been rarely reported. This study investigates the effect of PEG dispersity on the M W distribution of PEG grafted onto AuNP surfaces and its subsequent impact on protein adsorption and pharmacokinetics, by modifying AuNPs with monodisperse PEG methyl ether thiols (mPEG n -HS, n = 36, 45) and traditional polydisperse mPEG2k-SH (M W = 1900). Polydisperse PEG-AuNPs favor the enrichment of lower M W PEG fractions on their surface due to the steric hindrance effect, which leads to increased protein adsorption. In contrast, monodisperse PEG-AuNPs have a uniform length of PEG outlayer, exhibiting markedly lower yet constant protein adsorption. Pharmacokinetics analysis in tumor-bearing mice demonstrated that monodisperse PEG-AuNPs possess a significantly prolonged blood circulation half-life and enhanced tumor accumulation compared with their polydisperse counterpart. These findings underscore the critical, yet often underestimated, impacts of PEG dispersity on the in vitro and in vivo behavior of PEG-AuNPs, highlighting the role of monodisperse PEG in enhancing therapeutic nanoparticle performance.
Collapse
Affiliation(s)
- Xinsheng Tian
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University Hangzhou 310018 China
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| | - Yumin Yuan
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| |
Collapse
|
18
|
He M, Hu L. Enhanced detection of rifampicin and isoniazid resistance in mycobacterium tuberculosis using AuNP-qPCR: a rapid and accurate method. Am J Transl Res 2024; 16:2310-2317. [PMID: 39006288 PMCID: PMC11236652 DOI: 10.62347/qtls9708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/19/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES To evaluate the resistance of Mycobacterium tuberculosis to Rifampicin (RIF) and Isoniazid (INH) using enhanced qPCR methodologies. METHODS This study compared the detection of drug-resistant mutations in the rpoB and katG genes using AuNP-qPCR and No-AuNP-qPCR. Calibration curves were constructed to correlate the amount of template with the Ct values for resistant strains. RESULTS The AuNP-qPCR method demonstrated high efficacy in detecting RIF resistance with an area under the curve (AUC) of 0.951, sensitivity of 97.92%, specificity of 87.5%, and overall accuracy of 95.31%. Similarly, INH resistance detection by AuNP-qPCR showed an AUC of 0.981, sensitivity of 98.08%, specificity of 94.44%, and accuracy of 97.14%. Comparatively, No-AuNP-qPCR yielded lower performance metrics for RIF resistance (AUC: 0.867, sensitivity: 91.67%, specificity: 75%, accuracy: 87.5%) and INH resistance (AUC: 0.882, sensitivity: 88.46%, specificity: 83.33%, accuracy: 87.14%). CONCLUSIONS AuNP-qPCR exhibits over traditional qPCR methods, making it a promising tool for rapid and precise detection of drug resistance in Mycobacterium tuberculosis. This method's robust performance underscores its potential to improve diagnostic protocols and contribute to more effective management of tuberculosis treatment.
Collapse
Affiliation(s)
- Mouhai He
- College of Medical Technology and Nursing, Hunan Institute of Traffic Engineering Hengyang 421009, Hunan, China
| | - Lingli Hu
- Department of Ultrasound, Hengyang Central Hospital Hengyang 421001, Hunan, China
| |
Collapse
|
19
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
20
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
21
|
Chiang MC, Yang YP, Nicol CJB, Wang CJ. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int J Mol Sci 2024; 25:2360. [PMID: 38397037 PMCID: PMC10888679 DOI: 10.3390/ijms25042360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
22
|
Chauhan G, Chopra V, Alvarado AG, Gómez Siono JA, Madou MJ, Martinez-Chapa SO, Kulkarni MM. Doxorubicin Conjugated γ-Globulin Functionalised Gold Nanoparticles: A pH-Responsive Bioinspired Nanoconjugate Approach for Advanced Chemotherapeutics. Pharmaceutics 2024; 16:208. [PMID: 38399262 PMCID: PMC10893120 DOI: 10.3390/pharmaceutics16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024] Open
Abstract
Developing successful nanomedicine hinges on regulating nanoparticle surface interactions within biological systems, particularly in intravenous nanotherapeutics. We harnessed the surface interactions of gold nanoparticles (AuNPs) with serum proteins, incorporating a γ-globulin (γG) hard surface corona and chemically conjugating Doxorubicin to create an innovative hybrid anticancer nanobioconjugate, Dox-γG-AuNPs. γG (with an isoelectric point of ~7.2) enhances cellular uptake and exhibits pH-sensitive behaviour, favouring targeted cancer cell drug delivery. In cell line studies, Dox-γG-AuNPs demonstrated a 10-fold higher cytotoxic potency compared to equivalent doxorubicin concentrations, with drug release favoured at pH 5.5 due to the γ-globulin corona's inherent pH sensitivity. This bioinspired approach presents a novel strategy for designing hybrid anticancer therapeutics. Our study also explored the intricacies of the p53-mediated ROS pathway's role in regulating cell fate, including apoptosis and necrosis, in response to these treatments. The pathway's delicate balance of ROS emerged as a critical determinant, warranting further investigation to elucidate its mechanisms and implications. Overall, leveraging the robust γ-globulin protein corona on AuNPs enhances biostability in harsh serum conditions, augments anticancer potential within pH-sensitive environments, and opens promising avenues for bioinspired drug delivery and the design of novel anticancer hybrids with precise targeting capabilities.
Collapse
Affiliation(s)
- Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; (V.C.); amealvarado-@hotmail.com (A.G.A.); (M.J.M.); (S.O.M.-C.)
| | - Vianni Chopra
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; (V.C.); amealvarado-@hotmail.com (A.G.A.); (M.J.M.); (S.O.M.-C.)
| | - América García Alvarado
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; (V.C.); amealvarado-@hotmail.com (A.G.A.); (M.J.M.); (S.O.M.-C.)
| | - Jocelyn Alexandra Gómez Siono
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; (V.C.); amealvarado-@hotmail.com (A.G.A.); (M.J.M.); (S.O.M.-C.)
| | - Marc J. Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; (V.C.); amealvarado-@hotmail.com (A.G.A.); (M.J.M.); (S.O.M.-C.)
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Sergio Omar Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; (V.C.); amealvarado-@hotmail.com (A.G.A.); (M.J.M.); (S.O.M.-C.)
| | - Manish M. Kulkarni
- Centre for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|