1
|
Sharma R, Kumar S, Komal K, Ghosh R, Thakur S, Pal RR, Kumar M. Comprehensive insights into pancreatic cancer treatment approaches and cutting-edge nanocarrier solutions: from pathology to nanomedicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04094-y. [PMID: 40202672 DOI: 10.1007/s00210-025-04094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. It is characterized by poor prognosis, high mortality, and recurrence rates. Various modifiable and non-modifiable risk factors are associated with pancreatic cancer incidence. Available treatments for pancreatic cancer include surgery, chemotherapy, radiotherapy, photodynamic therapy, supportive care, targeted therapy, and immunotherapy. However, the survival rates for PC are very low. Regrettably, despite efforts to enhance prognosis, the survival rate of pancreatic cancer remains relatively low. Therefore, it is essential to investigate new approaches to improve pancreatic cancer treatment. By synthesizing current knowledge and identifying existing gaps, this article provides a comprehensive overview of risk factors, pathology, conventional treatments, targeted therapies, and recent advancements in nanocarriers for its treatment, along with various clinical trials and patents that justify the safety and efficacy of innovative carriers for drug delivery systems. Ultimately, this review underscores the potential of these innovative formulations to improve outcomes and contribute significantly to the advancement of Pancreatic Cancer treatment. Together, these insights highlight nano-formulations as a promising frontier for effectively treating Pancreatic Cancer.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ravi Raj Pal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Topal O, Topal BG, Baş Y, Ongan B, Sadi G, Aslan E, Yavaş BD, Pektaş MB. Impact of Juglone, a PIN1 İnhibitor, on Oral Carcinogenesis Induced by 4-Nitroquinoline-1-Oxide (4NQO) in Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1192. [PMID: 39202474 PMCID: PMC11356210 DOI: 10.3390/medicina60081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: PIN1 is overexpressed in several human cancers, including prostate cancer, breast cancer, and oral squamous carcinomas. Juglone (J), derived from walnut, was reported to selectively inhibit PIN1 by modifying its sulfhydryl groups. In this study, the potential effects of juglone, also known as PIN1 inhibitor, on oral cancer and carcinogenesis were investigated at the molecular level. Materials and Methods: 4-Nitroquinoline N-oxide (4-NQO) was used to create an oral cancer model in animals. Wistar rats were divided into five groups: Control, NQO, Juglone, NQO+J, and NQO+J*. The control group received the basal diet and tap water throughout the experiment. The NQO group received 4-NQO for 8 weeks in drinking water only. The Juglone group was administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). The NQO+J group received 4-NQO in drinking water for 8 weeks, starting 1 week after the cessation of 4-NQO treatment. They were then administered intraperitoneally in a juglone solution for 10 weeks. (1 mg/kg/day). NQO+J* group: received 4 NQO for 8 weeks in drinking water and administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). They were sacrificed at the end of the 22-week experimental period. The tongue tissues of the rats were isolated after the experiment, morphological changes were investigated by histological examinations, and the molecular apoptotic process was investigated by rt-qPCR and western blot. Results: Histological results indicate that tumors are formed in the tongue tissue with 4-NQO, and juglone treatment largely corrects the epithelial changes that developed with 4-NQO. It has been determined that apoptotic factors p53, Bax, and caspases are induced by the effect of juglone, while antiapoptotic factors such as Bcl-2 are suppressed. However, it was observed that the positive effects were more pronounced in rats given juglone together with 4-NQO. Conclusions: The use of PIN1 inhibitors such as juglone in place of existing therapeutic approaches might be a promising and novel approach to the preservation and treatment of oral cancer and carcinogenesis. However, further research is required to investigate the practical application of such inhibitors.
Collapse
Affiliation(s)
- Olgun Topal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Burcu Güçyetmez Topal
- Department of Pedodontics, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey;
| | - Yunus Baş
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Bünyamin Ongan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Gökhan Sadi
- Department of Biology, K.O. Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey;
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey;
| | - Betül Demirciler Yavaş
- Private Practice, Traditional and Complementary Treatment Center, 03200 Afyonkarahisar, Turkey;
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|