1
|
Saha A, Gibbs H, Peck KK, Yildirim O, Nilchian P, Karimi S, Lis E, Kosović V, Holodny AI. Comprehensive Review of the Utility of Dynamic Contrast-Enhanced MRI for the Diagnosis and Treatment Assessment of Spinal Benign and Malignant Osseous Disease. AJNR Am J Neuroradiol 2025; 46:465-475. [PMID: 39481890 PMCID: PMC11979806 DOI: 10.3174/ajnr.a8398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/12/2024] [Indexed: 11/03/2024]
Abstract
Conventional MRI is currently the preferred imaging technique for detection and evaluation of malignant spinal lesions. However, this technique is limited in its ability to assess tumor viability. Unlike conventional MRI, dynamic contrast-enhanced (DCE) MRI provides insight into the physiologic and hemodynamic characteristics of malignant spinal tumors and has been utilized in different types of spinal diseases. DCE has been shown to be especially useful in the cancer setting; specifically, DCE can discriminate between malignant and benign vertebral compression fractures as well as between atypical hemangiomas and metastases. DCE has also been shown to differentiate between different types of metastases. Furthermore, DCE can be useful in the assessment of radiation therapy for spinal metastases, including the prediction of tumor recurrence. This review considers data analysis methods utilized in prior studies of DCE-MRI data acquisition and clinical implications.
Collapse
Affiliation(s)
- Atin Saha
- From the Departments of Radiology (A.S., H.G., O.Y., P.N., S.K., E.L., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (A.S., S.K., E.L., A.I.H.), Weill Cornell Medical College, New York, New York
| | - Haley Gibbs
- From the Departments of Radiology (A.S., H.G., O.Y., P.N., S.K., E.L., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kyung K Peck
- Department of Medical Physics (K.K.P.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - Onur Yildirim
- From the Departments of Radiology (A.S., H.G., O.Y., P.N., S.K., E.L., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - Parsa Nilchian
- From the Departments of Radiology (A.S., H.G., O.Y., P.N., S.K., E.L., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sasan Karimi
- From the Departments of Radiology (A.S., H.G., O.Y., P.N., S.K., E.L., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (A.S., S.K., E.L., A.I.H.), Weill Cornell Medical College, New York, New York
| | - Eric Lis
- From the Departments of Radiology (A.S., H.G., O.Y., P.N., S.K., E.L., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (A.S., S.K., E.L., A.I.H.), Weill Cornell Medical College, New York, New York
| | - Vilma Kosović
- Department of Radiology (V.K.), General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Andrei I Holodny
- From the Departments of Radiology (A.S., H.G., O.Y., P.N., S.K., E.L., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (A.S., S.K., E.L., A.I.H.), Weill Cornell Medical College, New York, New York
| |
Collapse
|
2
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Zhou J, Hou Z, Tian C, Zhu Z, Ye M, Chen S, Yang H, Zhang X, Zhang B. Review of tracer kinetic models in evaluation of gliomas using dynamic contrast-enhanced imaging. Front Oncol 2024; 14:1380793. [PMID: 38947892 PMCID: PMC11211364 DOI: 10.3389/fonc.2024.1380793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Glioma is the most common type of primary malignant tumor of the central nervous system (CNS), and is characterized by high malignancy, high recurrence rate and poor survival. Conventional imaging techniques only provide information regarding the anatomical location, morphological characteristics, and enhancement patterns. In contrast, advanced imaging techniques such as dynamic contrast-enhanced (DCE) MRI or DCE CT can reflect tissue microcirculation, including tumor vascular hyperplasia and vessel permeability. Although several studies have used DCE imaging to evaluate gliomas, the results of data analysis using conventional tracer kinetic models (TKMs) such as Tofts or extended-Tofts model (ETM) have been ambiguous. More advanced models such as Brix's conventional two-compartment model (Brix), tissue homogeneity model (TH) and distributed parameter (DP) model have been developed, but their application in clinical trials has been limited. This review attempts to appraise issues on glioma studies using conventional TKMs, such as Tofts or ETM model, highlight advancement of DCE imaging techniques and provides insights on the clinical value of glioma management using more advanced TKMs.
Collapse
Affiliation(s)
- Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zujun Hou
- The Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Chuanshuai Tian
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meiping Ye
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huiquan Yang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Zhdanov AV, Sen R, Devoy C, Li L, Tangney M, Papkovsky DB. Analysis of tumour oxygenation in model animals on a phosphorescence lifetime based macro-imager. Sci Rep 2023; 13:18732. [PMID: 37907625 PMCID: PMC10618169 DOI: 10.1038/s41598-023-46224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/30/2023] [Indexed: 11/02/2023] Open
Abstract
Monitoring of tissue O2 is essential for cancer development and treatment, as hypoxic tumour regions develop resistance to radio- and chemotherapy. We describe a minimally invasive technique for the monitoring of tissue oxygenation in developing grafted tumours, which uses the new phosphorescence lifetime based Tpx3Cam imager. CT26 cells stained with a near-infrared emitting nanoparticulate O2 probe NanO2-IR were injected into mice to produce grafted tumours with characteristic phosphorescence. The tumours were allowed to develop for 3, 7, 10 and 17 days, with O2 imaging experiments performed on live and euthanised animals at different time points. Despite a marked trend towards decreased O2 in dead animals, their tumour areas produced phosphorescence lifetime values between 44 and 47 µs, which corresponded to hypoxic tissue with 5-20 μM O2. After the O2 imaging in animals, confocal Phosphorescence Lifetime Imaging Microscopy was conducted to examine the distribution of NanO2-IR probe in the tumours, which were excised, fixed and sliced for the purpose. The probe remained visible as bright and discrete 'islands' embedded in the tumour tissue until day 17 of tumour growth. Overall, this O2 macro-imaging method using NanO2-IR holds promise for long-term studies with grafted tumours in live animal models, providing quantitative 2D mapping of tissue O2.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Rajannya Sen
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Ciaran Devoy
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Liang Li
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Mark Tangney
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland.
| |
Collapse
|
5
|
Breast density is strongly associated with multiparametric magnetic resonance imaging biomarkers and pro-tumorigenic proteins in situ. Br J Cancer 2022; 127:2025-2033. [PMID: 36138072 PMCID: PMC9681775 DOI: 10.1038/s41416-022-01976-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND High mammographic density is an independent risk factor for breast cancer by poorly understood molecular mechanisms. Women with dense breasts often undergo conventional magnetic resonance imaging (MRI) despite its limited specificity, which may be increased by diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) and contrast. How these modalities are affected by breast density per se and their association with the local microenvironment are undetermined. METHODS Healthy postmenopausal women attending mammography screen with extremely dense or entirely fatty breasts underwent multiparametric MRI for analyses of lean tissue fraction (LTF), ADC and perfusion dynamics. Microdialysis was used for extracellular proteomics in situ. RESULTS Significantly increased LTF and ADC and delayed perfusion were detected in dense breasts. In total, 270 proteins were quantified, whereof 124 related to inflammation, angiogenesis, and cellular growth were significantly upregulated in dense breasts. Most of these correlated significantly with LTF, ADC and the perfusion data. CONCLUSIONS ADC and perfusion characteristics depend on breast density, which should be considered during the implementation of thresholds for malignant lesions. Dense and nondense breasts are two essentially different biological entities, with a pro-tumorigenic microenvironment in dense breasts. Our data reveal several novel pathways that may be explored for breast cancer prevention strategies.
Collapse
|
6
|
Xian S, Dosset M, Almanza G, Searles S, Sahani P, Waller TC, Jepsen K, Carter H, Zanetti M. The unfolded protein response links tumor aneuploidy to local immune dysregulation. EMBO Rep 2021; 22:e52509. [PMID: 34698427 PMCID: PMC8647024 DOI: 10.15252/embr.202152509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Aneuploidy is a chromosomal abnormality associated with poor prognosis in many cancer types. Here, we tested the hypothesis that the unfolded protein response (UPR) mechanistically links aneuploidy and local immune dysregulation. Using a single somatic copy number alteration (SCNA) score inclusive of whole‐chromosome, chromosome arm, and focal alterations in a pan‐cancer analysis of 9,375 samples in The Cancer Genome Atlas (TCGA) database, we found an inverse correlation with a cytotoxicity (CYT) score across disease stages. Co‐expression patterns of UPR genes changed substantially between SCNAlow and SCNAhigh groups. Pathway activity scores showed increased activity of multiple branches of the UPR in response to aneuploidy. The PERK branch showed the strongest association with a reduced CYT score. The conditioned medium of aneuploid cells transmitted XBP1 splicing and caused IL‐6 and arginase 1 transcription in receiver bone marrow‐derived macrophages and markedly diminished the production of IFN‐γ and granzyme B in activated human T cells. We propose the UPR as a mechanistic link between aneuploidy and immune dysregulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Su Xian
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Paras Sahani
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - T Cameron Waller
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Kristen Jepsen
- IGM Genomics Center, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Callewaert B, Jones EAV, Himmelreich U, Gsell W. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11060926. [PMID: 34064194 PMCID: PMC8224283 DOI: 10.3390/diagnostics11060926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
Collapse
Affiliation(s)
- Bram Callewaert
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
| | - Elizabeth A. V. Jones
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
- CARIM, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Uwe Himmelreich
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- Correspondence:
| | - Willy Gsell
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
| |
Collapse
|
8
|
Huang YS, Chen JLY, Chen HM, Yeh LH, Shih JY, Yen RF, Chang YC. Assessing tumor angiogenesis using dynamic contrast-enhanced integrated magnetic resonance-positron emission tomography in patients with non-small-cell lung cancer. BMC Cancer 2021; 21:348. [PMID: 33794813 PMCID: PMC8017855 DOI: 10.1186/s12885-021-08064-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Angiogenesis assessment is important for personalized therapeutic intervention in patients with non-small-cell lung cancer (NSCLC). This study investigated whether radiologic parameters obtained by dynamic contrast-enhanced (DCE)-integrated magnetic resonance-positron emission tomography (MR-PET) could be used to quantitatively assess tumor angiogenesis in NSCLC. Methods This prospective cohort study included 75 patients with NSCLC who underwent DCE-integrated MR-PET at diagnosis. The following parameters were analyzed: metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax), reverse reflux rate constant (kep), volume transfer constant (Ktrans), blood plasma volume fraction (vp), extracellular extravascular volume fraction (ve), apparent diffusion coefficient (ADC), and initial area under the time-to-signal intensity curve at 60 s post enhancement (iAUC60). Serum biomarkers of tumor angiogenesis, including vascular endothelial growth factor-A (VEGF-A), angiogenin, and angiopoietin-1, were measured by enzyme-linked immunosorbent assays simultaneously. Results Serum VEGF-A (p = 0.002), angiogenin (p = 0.023), and Ang-1 (p < 0.001) concentrations were significantly elevated in NSCLC patients compared with healthy individuals. MR-PET parameters, including MTV, Ktrans, and kep, showed strong linear correlations (p < 0.001) with serum angiogenesis-related biomarkers. Serum VEGF-A concentrations (p = 0.004), MTV values (p < 0.001), and kep values (p = 0.029) were significantly higher in patients with advanced-stage disease (stage III or IV) than in those with early-stage disease (stage I or II). Patients with initial higher values of angiogenesis-related MR-PET parameters, including MTV > 30 cm3 (p = 0.046), Ktrans > 200 10− 3/min (p = 0.069), and kep > 900 10− 3/min (p = 0.048), may have benefited from angiogenesis inhibitor therapy, which thus led to significantly longer overall survival. Conclusions The present findings suggest that DCE-integrated MR-PET provides a reliable, non-invasive, quantitative assessment of tumor angiogenesis; can guide the use of angiogenesis inhibitors toward longer survival; and will play an important role in the personalized treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Sen Huang
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Ming Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Hao Yeh
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine National Taiwan University Hospital, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yeun-Chung Chang
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan. .,Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Tran A, Koh TS, Prawira A, Ho RZW, Le TBU, Vu TC, Hartano S, Teo XQ, Chen WC, Lee P, Thng CH, Huynh H. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as Imaging Biomarker for Vascular Normalization Effect of Infigratinib in High-FGFR-Expressing Hepatocellular Carcinoma Xenografts. Mol Imaging Biol 2021; 23:70-83. [PMID: 32909245 DOI: 10.1007/s11307-020-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/06/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Overexpression of fibroblast growth factor receptor (FGFR) contributes to tumorigenesis, metastasis, and poor prognosis of hepatocellular carcinoma (HCC). Infigratinib-a pan-FGFR inhibitor-potently suppresses the growth of high-FGFR-expressing HCCs in part via alteration of the tumor microenvironment and vessel normalization. In this study, we aim to assess the utility of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) as a non-invasive imaging technique to detect microenvironment changes associated with infigratinib and sorafenib treatment in high-FGFR-expressing HCC xenografts. PROCEDURES Serial DCE-MRIs were performed on 12 nude mice bearing high-FGFR-expressing patient-derived HCC xenografts to quantify tumor microenvironment pre- (day 0) and post-treatment (days 3, 6, 9, and 15) of vehicle, sorafenib, and infigratinib. DCE-MRI data were analyzed using extended generalized kinetic model and two-compartment distributed parameter model. After treatment, immunohistochemistry stains were performed on the harvested tumors to confirm DCE-MRI findings. RESULTS By treatment day 15, infigratinib induced tumor regression (70 % volume reduction from baseline) while sorafenib induced relative growth arrest (185 % volume increase from baseline versus 694 % volume increase from baseline of control). DCE-MRI analysis revealed different changes in microcirculatory parameters upon exposure to sorafenib versus infigratinib. While sorafenib induced microenvironment changes similar to those of rapidly growing tumors, such as a decrease in blood flow (F), fractional intravascular volume (vp), and permeability surface area product (PS), infigratinib induced the exact opposite changes as early as day 3 after treatment: increase in F, vp, and PS. CONCLUSIONS Our study demonstrated that DCE-MRI is a reliable non-invasive imaging technique to monitor tumor microcirculatory response to FGFR inhibition and VEGF inhibition in high-FGFR-expressing HCC xenografts. Furthermore, the microcirculatory changes from FGFR inhibition manifested early upon treatment initiation and were reliably detected by DCE-MRI, creating possibilities of combinatorial therapy for synergistic effect.
Collapse
Affiliation(s)
- Anh Tran
- Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Tong San Koh
- Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Aldo Prawira
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Rebecca Zhi Wen Ho
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Thanh Chung Vu
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Septian Hartano
- Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Xing Qi Teo
- Functional Metabolism Group, Agency for Science, Technology and Research, Singapore BioImaging Consortium, Singapore, Singapore
| | | | - Philip Lee
- Functional Metabolism Group, Agency for Science, Technology and Research, Singapore BioImaging Consortium, Singapore, Singapore
| | - Choon Hua Thng
- Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore.
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
10
|
Curry FE, Taxt T, Rygh CB, Pavlin T, Bjørnstad R, Døskeland SO, Reed RK. Epac1 -/- mice have elevated baseline permeability and do not respond to histamine as measured with dynamic contrast-enhanced magnetic resonance imaging with contrast agents of different molecular weights. Acta Physiol (Oxf) 2019; 225:e13199. [PMID: 30300965 PMCID: PMC6646910 DOI: 10.1111/apha.13199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Aim Epac1−/− mice, but not Epac2−/− mice have elevated baseline permeability to albumin. This study extends the investigations of how Epac‐dependent pathways modulate transvascular exchange in response to the classical inflammatory agent histamine. It also evaluates the limitations of models of blood‐to‐tissue exchange in transgenic mice in DCE‐MRI measurements. Methods We measured DCE‐MRI signal intensity in masseter muscle of wt and Epac1−/− mice with established approaches from capillary physiology to determine how changes in blood flow and vascular permeability contribute to overall changes of microvascular flux. We used two tracers, the high molecular weight tracer (Gadomer‐17, MW 17 kDa, apparent MW 30‐35 kDa) is expected to be primarily limited by diffusion and therefore less dependent on changes in blood flow and the low molecular weight tracer (Dotarem (MW 0.56 kDa) whose transvascular exchange is determined by both blood flow and permeability. Paired experiments in each animal combined with analytical methods provided an internally consistent description of microvascular transport. Results Epac1−/− mice had elevated baseline permeability relative to wt control mice for Dotarem and Gadomer‐17. In contrast to wt mice, Epac1−/− mice failed to increase transvascular permeability in response to histamine. Dotarem underestimated blood flow and vascular volume and Gadomer‐17 has limited sensitivity in extravascular accumulation. Conclusion The study suggests that the normal barrier loosening effect of histamine in venular microvessels do not function when the normal barrier tightening effect of Epac1 is already compromised. The study also demonstrated that the numerical analysis of DCE‐MRI data with tracers of different molecular weight has significant limitations.
Collapse
Affiliation(s)
- Fitz‐Roy E. Curry
- Department of Physiology and Membrane Biology University of California Davis Davis California
| | - Torfinn Taxt
- Department of Biomedicine University of Bergen Bergen Norway
| | - Cecilie Brekke Rygh
- Department of Biomedicine University of Bergen Bergen Norway
- Molecular Imaging Centre Department of Biomedicine University of Bergen Bergen Norway
| | - Tina Pavlin
- Department of Biomedicine University of Bergen Bergen Norway
- Molecular Imaging Centre Department of Biomedicine University of Bergen Bergen Norway
| | - Ronja Bjørnstad
- Department of Biomedicine University of Bergen Bergen Norway
| | | | - Rolf K. Reed
- Department of Biomedicine University of Bergen Bergen Norway
- Centre for Cancer Biomarkers University of Bergen Bergen Norway
| |
Collapse
|
11
|
El Bairi K, Amrani M, Afqir S. Starvation tactics using natural compounds for advanced cancers: pharmacodynamics, clinical efficacy, and predictive biomarkers. Cancer Med 2018; 7:2221-2246. [PMID: 29732738 PMCID: PMC6010871 DOI: 10.1002/cam4.1467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
The high mortality associated with oncological diseases is mostly due to tumors in advanced stages, and their management is a major challenge in modern oncology. Angiogenesis is a defined hallmark of cancer and predisposes to metastatic invasion and dissemination and is therefore an important druggable target for cancer drug discovery. Recently, because of drug resistance and poor prognosis, new anticancer drugs from natural sources targeting tumor vessels have attracted more attention and have been used in several randomized and controlled clinical trials as therapeutic options. Here, we outline and discuss potential natural compounds as salvage treatment for advanced cancers from recent and ongoing clinical trials and real-world studies. We also discuss predictive biomarkers for patients' selection to optimize the use of these potential anticancer drugs.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and PharmacyMohamed Ist UniversityOujdaMorocco
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco‐biologieFaculty of MedicinePathology DepartmentNational Institute of OncologyUniversité Mohamed VRabatMorocco
| | - Said Afqir
- Department of Medical OncologyMohamed VI University HospitalOujdaMorocco
| |
Collapse
|
12
|
Hectors SJ, Jacobs I, Lok J, Peters J, Bussink J, Hoeben FJ, Keizer HM, Janssen HM, Nicolay K, Schabel MC, Strijkers GJ. Improved Evaluation of Antivascular Cancer Therapy Using Constrained Tracer-Kinetic Modeling for Multiagent Dynamic Contrast-Enhanced MRI. Cancer Res 2018; 78:1561-1570. [PMID: 29317433 DOI: 10.1158/0008-5472.can-17-2569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/10/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
Dynamic contrast-enhanced MRI (DCE-MRI) is a promising technique for assessing the response of tumor vasculature to antivascular therapies. Multiagent DCE-MRI employs a combination of low and high molecular weight contrast agents, which potentially improves the accuracy of estimation of tumor hemodynamic and vascular permeability parameters. In this study, we used multiagent DCE-MRI to assess changes in tumor hemodynamics and vascular permeability after vascular-disrupting therapy. Multiagent DCE-MRI (sequential injection of G5 dendrimer, G2 dendrimer, and Gd-DOTA) was performed in tumor-bearing mice before, 2 and 24 hours after treatment with vascular disrupting agent DMXAA or placebo. Constrained DCE-MRI gamma capillary transit time modeling was used to estimate flow F, blood volume fraction vb, mean capillary transit time tc, bolus arrival time td, extracellular extravascular fraction ve, vascular heterogeneity index α-1 (all identical between agents) and extraction fraction E (reflective of permeability), and transfer constant Ktrans (both agent-specific) in perfused pixels. F, vb, and α-1 decreased at both time points after DMXAA, whereas tc increased. E (G2 and G5) showed an initial increase, after which, both parameters restored. Ktrans (G2 and Gd-DOTA) decreased at both time points after treatment. In the control, placebo-treated animals, only F, tc, and Ktrans Gd-DOTA showed significant changes. Histologic perfused tumor fraction was significantly lower in DMXAA-treated versus control animals. Our results show how multiagent tracer-kinetic modeling can accurately determine the effects of vascular-disrupting therapy by separating simultaneous changes in tumor hemodynamics and vascular permeability.Significance: These findings describe a new approach to measure separately the effects of antivascular therapy on tumor hemodynamics and vascular permeability, which could help more rapidly and accurately assess the efficacy of experimental therapy of this class. Cancer Res; 78(6); 1561-70. ©2018 AACR.
Collapse
Affiliation(s)
- Stefanie J Hectors
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven, the Netherlands.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Igor Jacobs
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven, the Netherlands.,Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Jasper Lok
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes Peters
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | - Klaas Nicolay
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven, the Netherlands
| | - Matthias C Schabel
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon
| | - Gustav J Strijkers
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven, the Netherlands. .,Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Iversen AB, Busk M, Bertelsen LB, Laustsen C, Munk OL, Nielsen T, Wittenborn TR, Bussink J, Lok J, Stødkilde-Jørgensen H, Horsman MR. The potential of hyperpolarized 13C magnetic resonance spectroscopy to monitor the effect of combretastatin based vascular disrupting agents. Acta Oncol 2017; 56:1626-1633. [PMID: 28840759 DOI: 10.1080/0284186x.2017.1351622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Targeting tumor vasculature with vascular disrupting agents (VDAs) results in substantial cell death that precede tumor shrinkage. Here, we investigate the potential of hyperpolarized magnetic resonance spectroscopy (HPMRS) to monitor early metabolic changes associated with VDA treatment. METHODS Mice bearing C3H mammary carcinomas were treated with the VDAs combretastatin-A4-phosphate (CA4P) or the analog OXi4503, and HPMRS was performed following [1-13C]pyruvate administration. Similarly, treated mice were positron emission tomography (PET) scanned following administration of the glucose analog FDG. Finally, metabolic imaging parameters were compared to tumor regrowth delay and measures of vascular damage, derived from dynamic contrast-agent enhanced magnetic resonance imaging (DCE-MRI) and histology. RESULTS VDA-treatment impaired tumor perfusion (histology and DCE-MRI), reduced FDG uptake, increased necrosis, and slowed tumor growth. HPMRS, revealed that the [1-13C]pyruvate-to-[1-13C]lactate conversion remained unaltered, whereas [1-13C]lactate-to-[13C]bicarbonate (originating from respiratory CO2) ratios increased significantly following treatment. CONCLUSIONS DCE-MRI and FDG-PET revealed loss of vessel functionality, impaired glucose delivery and reduced metabolic activity prior to cell death. [1-13C]lactate-to-[13C]bicarbonate ratios increased significantly during treatment, indicating a decline in respiratory activity driven by the onset of hypoxia. HPMRS is promising for early detection of metabolic stress inflicted by VDAs, which cannot easily be inferred based on blood flow measurements.
Collapse
Affiliation(s)
- Ane B. Iversen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Ole L. Munk
- PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Nielsen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R. Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jasper Lok
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Michael R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
|
15
|
Identification of the S100 fused-type protein hornerin as a regulator of tumor vascularity. Nat Commun 2017; 8:552. [PMID: 28916756 PMCID: PMC5601918 DOI: 10.1038/s41467-017-00488-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/04/2017] [Indexed: 02/03/2023] Open
Abstract
Sustained angiogenesis is essential for the development of solid tumors and metastatic disease. Disruption of signaling pathways that govern tumor vascularity provide a potential avenue to thwart cancer progression. Through phage display-based functional proteomics, immunohistochemical analysis of human pancreatic ductal carcinoma (PDAC) specimens, and in vitro validation, we reveal that hornerin, an S100 fused-type protein, is highly expressed on pancreatic tumor endothelium in a vascular endothelial growth factor (VEGF)-independent manner. Murine-specific hornerin knockdown in PDAC xenografts results in tumor vessels with decreased radii and tortuosity. Hornerin knockdown tumors have significantly reduced leakiness, increased oxygenation, and greater apoptosis. Additionally, these tumors show a significant reduction in growth, a response that is further heightened when therapeutic inhibition of VEGF receptor 2 (VEGFR2) is utilized in combination with hornerin knockdown. These results indicate that hornerin is highly expressed in pancreatic tumor endothelium and alters tumor vessel parameters through a VEGF-independent mechanism.Angiogenesis is essential for solid tumor progression. Here, the authors interrogate the proteome of pancreatic cancer endothelium via phage display and identify hornerin as a critical protein whose expression is essential to maintain the pancreatic cancer vasculature through a VEGF-independent mechanism.
Collapse
|
16
|
Cantrell CG, Vakil P, Jeong Y, Ansari SA, Carroll TJ. Diffusion-compensated tofts model suggests contrast leakage through aneurysm wall. Magn Reson Med 2017; 78:2388-2398. [PMID: 28112862 DOI: 10.1002/mrm.26607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/06/2022]
Abstract
PURPOSE The purpose of this study was to investigate the diffusional transport of contrast agent and its effects on kinetic modeling of dynamic contrast enhanced (DCE) images. METHODS We performed simulations of our diffusion-compensated model and compared these results to human intracranial aneurysms (IAs). We derive an easy-to-use parameterization of diffusional effects that can provide an accurate estimate of diffusion corrected contrast agent leakage rates (ktrans ). Finally, we performed re-ansalysis of an existing data set to determine whether diffusion-corrected kinetic parameters improve the identification of high-risk IAs, thereby providing a new MRI-based imaging metric of IA stability based on wall integrity. RESULTS Probability distributions of simulated versus measured data show contrast leakage away from the aneurysm wall. Parameterization of diffusional effects on ktrans showed high correlation with long-chain methods in both surrounding tissue and near the aneurysm wall (r2 = 0.91 and r2 = 0.90, respectively). Finally, size, ktrans , and ( ktrans-kDCtrans) showed significant univariate relationships with rupture risk (P < 0.05). CONCLUSIONS We report the first evidence of diffusion-compensated permeability modeling in intracranial aneurysms and propose a parameterization of diffusional effects on ktrans . Furthermore, a comparison of measured versus simulated data suggests that contrast leakage occurs across the aneurysm wall. Magn Reson Med 78:2388-2398, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Charles G Cantrell
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, USA.,University of Chicago, Department of Radiology, Chicago, Illinois, USA
| | - Parmede Vakil
- University of Illinois, College of Medicine, Chicago, Illinois, USA.,Northwestern University, Department of Radiology, Evanston, Illinois, USA
| | - Yong Jeong
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, USA
| | - Sameer A Ansari
- Northwestern University, Department of Radiology, Evanston, Illinois, USA.,Northwestern University, Departments of Neurology and Neurological Surgery, Evanston, Illinois, USA
| | - Timothy J Carroll
- University of Chicago, Department of Radiology, Chicago, Illinois, USA
| |
Collapse
|
17
|
Zhang M, Zhou L, Huang N, Zeng H, Liu S, Liu L. Assessment of active and inactive sacroiliitis in patients with ankylosing spondylitis using quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 2016; 46:71-78. [PMID: 27865027 DOI: 10.1002/jmri.25559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To investigate the feasibility of using quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) to differentiate the active and inactive stage of sacroiliitis and the correlation between quantitative parameters and disease activity as measured by clinical scores. MATERIALS AND METHODS Forty-two patients with ankylosing spondylitis underwent DCE-MRI on a 3.0T MRI unit. According to the results of the blood sedimentation rate (ESR), C-reactive protein (CRP), and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), the patients were grouped into inactive and active groups. Pharmacokinetic models were used to generate the semiquantitative and quantitative hemodynamic parameters of DCE-MRI. The between-group differences were analyzed using the Wilcoxon rank sum test, and the correlations between the pharmacokinetic parameters and BASDAI score were analyzed using Spearman's correlation coefficient. The efficacies of different parameters in differentiating the active and inactive phase of sacroiliitis were evaluated and compared using receiver operator characteristics (ROC) curve analysis. RESULTS Ktrans , Kep , Ve , time to peak (TTP), max concentration (MAX Conc), and area under the curve (AUC) of the active group were significantly higher than those of the inactive stage group (P < 0.05). There were significant correlations between all parameters and BASDAI (P < 0.05). AUC of the receiver operator characteristics curve (AUCR ) of different parameters were not statistically different (P >0.05), except between AUC and MAX Conc (P = 0.0012). CONCLUSION Quantitative DCE-MRI parameters can differentiate between active and inactive ankylosing spondylitis. Among those, Ktrans had the highest correlation coefficient with the BASDAI score. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:71-78.
Collapse
Affiliation(s)
- Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Le Zhou
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Ning Huang
- GE Healthcare, Economic and Technological Development Zone, Beijing, P.R. China
| | - Hong Zeng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
18
|
Quantitative Evaluation of Tumor Early Response to a Vascular-Disrupting Agent with Dynamic PET. Mol Imaging Biol 2016; 17:865-73. [PMID: 25896816 DOI: 10.1007/s11307-015-0854-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study is to evaluate the early response of tumors to a vascular-disrupting agent (VDA) VEGF121/recombinant toxin gelonin (rGel) using dynamic [(18)F]FPPRGD2 positron emission tomography (PET) and kinetic parameter estimation. PROCEDURES Two tumor xenograft models: U87MG (highly vascularized) and A549 (moderately vascularized), were selected, and both were randomized into treatment and control groups. Sixty-minute dynamic PET scans with [(18)F]FPPRGD2 that targets to integrin αvβ3 were performed at days 0 (baseline), 1, and 3 since VEGF121/rGel treatment started. Dynamic PET-derived binding potential (BPND) and parametric maps were compared with tumor uptake (%ID/g) and the static PET image at 1 h after the tracer administration. RESULTS The growth of U87MG tumor was obviously delayed upon VEGF121/rGel treatment. A549 tumor was not responsive to the same treatment. BPND of treated U87MG tumors decreased significantly at day 1 (p < 0.05), and the difference was more significant at day 3 (p < 0.01), compared with the control group. However, the tracer uptake (%ID/g) derived from static images at 1-h time point did not show significant difference between the treated and control tumors until day 3. Little difference in tracer uptake (%ID/g) or BPND was found between treated and control A549 tumors. Considering the tracer retention in tumor and the slower clearance due to damaged tumor vasculature after treatment, BPND representing the actual specific binding portion appears to be more sensitive and accurate than the semiquantitative parameters (such as %ID/g) derived from static images to assess the early response of tumor to VDA treatment. CONCLUSIONS Quantitative analysis based on dynamic PET with [(18)F]FPPRGD2 shows advantages in distinguishing effective from ineffective treatment during the course of VEGF121/rGel therapy at early stage and is therefore more sensitive in assessing therapy response than static PET.
Collapse
|
19
|
Abstract
Cancer therapy is mainly based on different combinations of surgery, radiotherapy, and chemotherapy. Additionally, targeted therapies (designed to disrupt specific tumor hallmarks, such as angiogenesis, metabolism, proliferation, invasiveness, and immune evasion), hormonotherapy, immunotherapy, and interventional techniques have emerged as alternative oncologic treatments. Conventional imaging techniques and current response criteria do not always provide the necessary information regarding therapy success particularly to targeted therapies. In this setting, MR imaging offers an attractive combination of anatomic, physiologic, and molecular information, which may surpass these limitations, and is being increasingly used for therapy response assessment.
Collapse
|
20
|
Wittenborn TR, Nielsen T, Thomsen JS, Horsman MR, Nygaard JV. Simulation of heterogeneous molecular delivery in tumours using μCT reconstructions and MRI validation. Microvasc Res 2016; 108:69-74. [PMID: 27569845 DOI: 10.1016/j.mvr.2016.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
PRIMARY OBJECTIVE Utilizing the detailed vascular network obtained from micro-computed tomography (μCT) to establish a mathematical model of the temporal molecular distribution within a murine C3H mammary carcinoma. PROCEDURES Female CDF1 mice with a C3H mammary carcinoma on the right rear foot were used in this study. Dynamic information for each tumour was achieved by Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) on a 16.4 T system. Detailed morphologic information on the tumour vasculature was obtained by ex vivo μCT and compared to CD34 immunohistochemical staining of tissue sections. The reconstructed vascular network served as origin for the diffusion (described by the apparent diffusion coefficient) within the tumour (the restricted volume described by the interstitial volume fraction derived from DCE-MRI). The resulting partial differential equation was solved using Finite-Element and a combined mathematical graph describing molecular distribution within the tumour was obtained. RESULTS The established molecular distribution model predicted a heterogeneous distribution throughout the tumour related to the layout of the vascular network. Central tumour section concentration-time curves estimated from the established molecular distribution model were compared with physical measurements obtained by DCE-MRI of the same tumours and showed excellent correlation. CONCLUSIONS A mathematical model describing temporal molecular distribution based on detailed vascular network structures was established and compared to DCE-MRI. The improved morphological insight will enhance future studies of heterogeneous tumours.
Collapse
Affiliation(s)
- Thomas Rea Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, Building 5, 8000 Aarhus C, Denmark.
| | - Thomas Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, Building 5, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Jesper Skovhus Thomsen
- Department of Biomedicine - Anatomy, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark
| | - Michael Robert Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, Building 5, 8000 Aarhus C, Denmark
| | - Jens Vinge Nygaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C, Denmark; Department of Engineering, Aarhus University, Inge Lehmanns Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Abstract
Tumor hypoxia is a clinically relevant cause of radiation resistance. Direct measurements of tumor oxygenation have been performed predominantly with the Eppendorf histograph and these have defined the reduced prognosis after radiotherapy in poorly oxygenated tumors, especially head-and-neck cancer, cervix cancer and sarcoma. Exogenous markers have been used for immunohistochemical detection of hypoxic tumor areas (pimonidazole) or for positron-emission tomography (PET) imaging (misonidazole). Overexpression of hypoxia-related proteins such as hypoxia-inducible factor-1α (HIF-1α) has also been linked to poor prognosis after radiotherapy and such proteins are considered as potential endogenous hypoxia markers.
Collapse
Affiliation(s)
- Dirk Vordermark
- Universitätsklinik und Poliklinik für Strahlentherapie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
22
|
Chen J, Qian T, Zhang H, Wei C, Meng F, Yin H. Combining dynamic contrast enhanced magnetic resonance imaging and microvessel density to assess the angiogenesis after PEI in a rabbit VX2 liver tumor model. Magn Reson Imaging 2015; 34:177-82. [PMID: 26518059 DOI: 10.1016/j.mri.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 10/17/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the correlation between parameters of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and microvessel density (MVD) measurements in rabbit VX2 liver tumor models after percutaneous ethanol injection (PEI) and to observe influence of PEI on angiogenesis in a rabbit VX2 liver tumor model with dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS Forty five New Zealand white rabbits were used in this study. VX2 tumor tissue blocks were implanted in the left lobe of liver by percutaneous puncture under CT guidance. 2 weeks later, all rabbits underwent conventional MRI (T1WI, T2WI) to determine the successful models. Then those successful implanted VX2 liver tumor models in the study were randomly divided into the control group and the experimental group, the former did not have processing, and the latter underwent PEI under CT guidance. MRI (T1WI, T2WI and DCE-MRI) was performed 1 week later again, the parameters of DCE-MRI (Ktrans, Kep, Ve and iAUC60) of viable tumor portions were observed. Then all the liver samples were processed for hematoxylin and eosin (H&E) staining and immunohistochemical staining for CD31 to determine MVD. At last, data (including DCE-MRI perfusion parameters and MVD) were compared between experimental and control groups, correlation of DCE-MRI perfusion parameters and MVD was evaluated. RESULTS Twenty six VX2 liver tumor models underwent all examinations (thirteen models for each group) 1 week later after PEI. For the experimental group, the parameters Ktrans (r=0.6382, P=0.0189) and iAUC60 (r=0.6591, P=0.0143) in viable tumor portions were positively moderately correlated with MVD, whereas the parameters Kep (r=0.4656, P=0.1088) and Ve (r=0.2918, P=0.3333) were not correlated with MVD. For the control group, the parameters Ktrans (r=0.6385, P=0.0188) and iAUC60 (r=0.6391, P=0.0187) in viable tumor portions were also positively moderately correlated with MVD, while the parameters Kep (r=0.5518, P=0.0506) and Ve (r=-0.0824, P=0.789) were not correlated with MVD. Ktrans, Kep, Ve, iAUC60 and MVD of residual viable tumors in the experimental group 1 week later after PEI were similar to the viable tumors of the control group (P>0.05). CONCLUSIONS DCE-MRI could be used to evaluate the efficiency of VX2 liver tumor after PEI. The quantitative parameter Ktrans and semi-quantitative parameter iAUC60 of DCE-MRI are correlated with MVD, which can assess tumor angiogenesis noninvasively of VX2 liver tumor model, and ethanol has no significant impact on angiogenesis of viable tumor 1week later after PEI.
Collapse
Affiliation(s)
- Juan Chen
- Department of Radiology, The Fifth People of Shanghai, Fudan University, Shanghai, China
| | - Ting Qian
- Department of Radiology, The Fifth People of Shanghai, Fudan University, Shanghai, China
| | - Huanhuan Zhang
- Department of Radiology, The Fifth People of Shanghai, Fudan University, Shanghai, China
| | - Chunxiao Wei
- Department of Radiology, The Fifth People of Shanghai, Fudan University, Shanghai, China
| | - Fanhua Meng
- Department of Radiology, The Fifth People of Shanghai, Fudan University, Shanghai, China
| | - Huabin Yin
- Department of Radiology, The Fifth People of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Herskovits EH. Quantitative radiology: applications to oncology. Adv Cancer Res 2015; 124:1-30. [PMID: 25287685 DOI: 10.1016/b978-0-12-411638-2.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oncologists, clinician-scientists, and basic scientists collect computed tomography, magnetic resonance, and positron emission tomography images in the process of caring for patients, managing clinical trials, and investigating cancer biology. As we have developed more sophisticated means for noninvasively delineating and characterizing neoplasms, these image data have come to play a central role in oncology. In parallel, the increasing complexity and volume of these data have necessitated the development of quantitative methods for assessing tumor burden, and by proxy, disease-free survival.
Collapse
Affiliation(s)
- Edward H Herskovits
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
24
|
Towards multidimensional radiotherapy: key challenges for treatment individualisation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:934380. [PMID: 25834635 PMCID: PMC4365339 DOI: 10.1155/2015/934380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/03/2014] [Indexed: 12/03/2022]
Abstract
Functional and molecular imaging of tumours have offered the possibility of redefining the target in cancer therapy and individualising the treatment with a multidimensional approach that aims to target the adverse processes known to impact negatively upon treatment result. Following the first theoretical attempts to include imaging information into treatment planning, it became clear that the biological features of interest for targeting exhibit considerable heterogeneity with respect to magnitude, spatial, and temporal distribution, both within one patient and between patients, which require more advanced solutions for the way the treatment is planned and adapted. Combining multiparameter information from imaging with predictive information from biopsies and molecular analyses as well as in treatment monitoring of tumour responsiveness appears to be the key approach to maximise the individualisation of treatment. This review paper aims to discuss some of the key challenges for incorporating into treatment planning and optimisation the radiobiological features of the tumour derived from pretreatment PET imaging of tumour metabolism, proliferation, and hypoxia and combining them with intreatment monitoring of responsiveness and other predictive factors with the ultimate aim of individualising the treatment towards the maximisation of response.
Collapse
|
25
|
Lee JA, Biel NM, Kozikowski RT, Siemann DW, Sorg BS. In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors. BIOMEDICAL OPTICS EXPRESS 2014; 5:1965-79. [PMID: 24940553 PMCID: PMC4052922 DOI: 10.1364/boe.5.001965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 05/16/2023]
Abstract
Vascular targeting agents on their own have been shown to be insufficient for complete treatment of solid tumors, emphasizing the importance of studying the vascular effects of these drugs for their use with conventional therapies in the clinic. First-pass fluorescence imaging combined with hyperspectral imaging of hemoglobin saturation of microvessels in the murine dorsal window chamber model provides an easily implementable, low cost method to analyze tumor vascular response to these agents in real-time. In this study, the authors utilized these methods to spectroscopically demonstrate distinct vessel structure, blood flow and oxygenation changes in human Caki-2 renal cell carcinoma following treatment with OXi4503 alone, Sunitinib alone and both drugs together. We showed that treatment with OXi4503 plus Sunitinib destroyed existing tumor microvessels, inhibited blood vessel recovery and impaired Caki-2 tumor growth significantly more than either treatment alone.
Collapse
Affiliation(s)
- Jennifer A. Lee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building, Gainesville, FL 32610, USA
| | - Nikolett M. Biel
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Cancer and Genetics Research Complex, Gainesville, FL 32610, USA
| | | | - Dietmar W. Siemann
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brian S. Sorg
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20852, USA
| |
Collapse
|
26
|
Schmieder AH, Wang K, Zhang H, Senpan A, Pan D, Keupp J, Caruthers SD, Wickline SA, Shen B, Wagner EM, Lanza GM. Characterization of early neovascular response to acute lung ischemia using simultaneous (19)F/ (1)H MR molecular imaging. Angiogenesis 2013; 17:51-60. [PMID: 23918207 DOI: 10.1007/s10456-013-9377-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Abstract
Angiogenesis is an important constituent of many inflammatory pulmonary diseases, which has been unappreciated until recently. Early neovascular expansion in the lungs in preclinical models and patients is very difficult to assess noninvasively, particularly quantitatively. The present study demonstrated that (19)F/(1)H MR molecular imaging with αvβ3-targeted perfluorocarbon nanoparticles can be used to directly measure neovascularity in a rat left pulmonary artery ligation (LPAL) model, which was employed to create pulmonary ischemia and induce angiogenesis. In rats 3 days after LPAL, simultaneous (19)F/(1)H MR imaging at 3T revealed a marked (19)F signal in animals 2 h following αvβ3-targeted perfluorocarbon nanoparticles [(19)F signal (normalized to background) = 0.80 ± 0.2] that was greater (p = 0.007) than the non-targeted (0.30 ± 0.04) and the sham-operated (0.07 ± 0.09) control groups. Almost no (19)F signal was found in control right lung with any treatment. Competitive blockade of the integrin-targeted particles greatly decreased the (19)F signal (p = 0.002) and was equivalent to the non-targeted control group. Fluorescent and light microscopy illustrated heavy decorating of vessel walls in and around large bronchi and large pulmonary vessels. Focal segmental regions of neovessel expansion were also noted in the lung periphery. Our results demonstrate that (19)F/(1)H MR molecular imaging with αvβ3-targeted perfluorocarbon nanoparticles provides a means to assess the extent of systemic neovascularization in the lung.
Collapse
Affiliation(s)
- Anne H Schmieder
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid, Campus Box 8215, St. Louis, MO, 63110, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|