1
|
Karimian S, Ali MM, McAfee M, Saleem W, Duraibabu D, Memon SF, Lewis E. Challenges in Adapting Fibre Optic Sensors for Biomedical Applications. BIOSENSORS 2025; 15:312. [PMID: 40422051 DOI: 10.3390/bios15050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Fibre optic sensors (FOSs) have developed as a transformative technology in healthcare, often offering unparalleled accuracy and sensitivity in monitoring various physiological and biochemical parameters. Their applications range from tracking vital signs to guiding minimally invasive surgeries, enabling advancements in medical diagnostics and treatment. However, the integration of FOSs into biomedical applications faces numerous challenges. This article describes some challenges for adopting FOSs for biomedical purposes, exploring technical and practical obstacles, and examining innovative solutions. Significant challenges include biocompatibility, miniaturization, addressing signal processing complexities, and meeting regulatory standards. By outlining solutions to the stated challenges, it is intended that this article provides a better understanding of FOS technologies in biomedical settings and their implementation. A broader appreciation of the technology, offered in this article, enhances patient care and improved medical outcomes.
Collapse
Affiliation(s)
- Sahar Karimian
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Muhammad Mahmood Ali
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Waqas Saleem
- Department of Mechanical Engineering, Technological University Dublin, D15 YV78 Dublin, Ireland
| | - Dineshbabu Duraibabu
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Department of Mechatronic Engineering, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Sanober Farheen Memon
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland
| | - Elfed Lewis
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
2
|
Yu Q, Zhang YN, Jiang L, Li L, Li X, Zhao J. Flexible Optical Fiber Sensor for Non-Invasive Continuous Monitoring of Human Physiological Signals. SMALL METHODS 2025; 9:e2401368. [PMID: 39895190 DOI: 10.1002/smtd.202401368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Indexed: 02/04/2025]
Abstract
With increasing health awareness, monitoring human physiological signals for health status and disease prevention has become crucial. Non-invasive flexible wearable devices address issues like invasiveness, inconvenience, size, and continuous monitoring challenges in traditional devices. Among flexible sensors, optical fiber sensors (OFSs) stand out due to their excellent biocompatibility, anti-electromagnetic interference capabilities, and ability to monitor multiple signals simultaneously. This paper reviews the application of flexible optical fiber sensing technology (OFST) in monitoring human lung function, cardiovascular function, body parameters, motor function, and various physiological signals. It emphasizes the importance of continuous monitoring in personal health management, clinical settings, sports training, and emergency response. The review discusses challenges in OFST for continuous health signal monitoring and envisions its significant potential for future development. This technology underscores the importance of constant health signal monitoring and highlights the advantages and prospects of optical fiber sensing. Innovations in OFS for non-invasive continuous monitoring of physiological signals hold profound implications for materials science, sensing technology, and biomedicine.
Collapse
Affiliation(s)
- Qi Yu
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Ya-Nan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
- State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 110819
| | - Lingxiao Jiang
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Linqian Li
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Xuegang Li
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
- State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 110819
| | - Jian Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
- State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 110819
| |
Collapse
|
3
|
Yu K, Chen W, Deng D, Wu Q, Hao J. Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability. SENSORS (BASEL, SWITZERLAND) 2024; 24:2057. [PMID: 38610274 PMCID: PMC11014410 DOI: 10.3390/s24072057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Batteries play a crucial role as energy storage devices across various industries. However, achieving high performance often comes at the cost of safety. Continuous monitoring is essential to ensure the safety and reliability of batteries. This paper investigates the advancements in battery monitoring technology, focusing on fiber Bragg gratings (FBGs). By examining the factors contributing to battery degradation and the principles of FBGs, this study discusses key aspects of FBG sensing, including mounting locations, monitoring targets, and their correlation with optical signals. While current FBG battery sensing can achieve high measurement accuracies for temperature (0.1 °C), strain (0.1 με), pressure (0.14 bar), and refractive index (6 × 10-5 RIU), with corresponding sensitivities of 40 pm/°C, 2.2 pm/με, -0.3 pm/bar, and -18 nm/RIU, respectively, accurately assessing battery health in real time remains a challenge. Traditional methods struggle to provide real-time and precise evaluations by analyzing the microstructure of battery materials or physical phenomena during chemical reactions. Therefore, by summarizing the current state of FBG battery sensing research, it is evident that monitoring battery material properties (e.g., refractive index and gas properties) through FBGs offers a promising solution for real-time and accurate battery health assessment. This paper also delves into the obstacles of battery monitoring, such as standardizing the FBG encapsulation process, decoupling multiple parameters, and controlling costs. Ultimately, the paper highlights the potential of FBG monitoring technology in driving advancements in battery development.
Collapse
Affiliation(s)
- Kaimin Yu
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Wen Chen
- School of Ocean Information Engineering, Jimei University, Xiamen 361021, China
| | - Dingrong Deng
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Qihui Wu
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Jianzhong Hao
- Institute for Infocomm Research (IR), Agency for Science, Technology and Research (A★STAR), Singapore 138632, Singapore
| |
Collapse
|
4
|
Hou L, Akutagawa S, Tomoshige Y, Kimura T. Experimental Investigation for Monitoring Corrosion Using Plastic Optical Fiber Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:885. [PMID: 38339602 PMCID: PMC10857450 DOI: 10.3390/s24030885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The timely and cost-effective identification of the onset of corrosion and its progress would be critical for effectively maintaining structural integrity. Consequently, a series of fundamental experiments were conducted to capture the corrosion process on a steel plate using a new type of plastic optical fiber (POF) sensor. Electrolytic corrosion experiments were performed on a 5 mm thick steel plate immersed in an aqueous solution. The POF sensor installed on the upper side of the plate and directed downward detected the upward progression of the corrosion zone that formed on the underside of the plate. The results showed that the POF sensors could detect the onset of the upward-progressing corrosion front as it passed the 1 and 2 mm marks related to the thickness of the corroded zone. The POF sensors were designed to optically identify corrosion; therefore, the data obtained by these sensors could be processed using a newly developed graphic application software for smartphones and also identified by the naked eye. This method offered an easy and cost-effective solution for verifying the corrosion state of structural components.
Collapse
Affiliation(s)
- Liang Hou
- Department of Civil Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
| | - Shinichi Akutagawa
- Department of Civil Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
| | - Yuki Tomoshige
- Engineering Department, JFE Shoji Terre One Corporation, 2-1, Otemachi 2-Chome, Chiyoda-ku, Tokyo 100-0004, Japan; (Y.T.); (T.K.)
| | - Takashi Kimura
- Engineering Department, JFE Shoji Terre One Corporation, 2-1, Otemachi 2-Chome, Chiyoda-ku, Tokyo 100-0004, Japan; (Y.T.); (T.K.)
| |
Collapse
|
5
|
Strutynski C, Evrard M, Désévédavy F, Gadret G, Jules JC, Brachais CH, Kibler B, Smektala F. 4D Optical fibers based on shape-memory polymers. Nat Commun 2023; 14:6561. [PMID: 37848490 PMCID: PMC10582083 DOI: 10.1038/s41467-023-42355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Adaptative objects based on shape-memory materials are expected to significantly impact numerous technological sectors including optics and photonics. In this work, we demonstrate the manufacturing of shape-memory optical fibers from the thermal stretching of additively manufactured preforms. First, we show how standard commercially-available thermoplastics can be used to produce long continuously-structured microfilaments with shape-memory abilities. Shape recovery as well as programmability performances of such elongated objects are assessed. Next, we open the way for light-guiding multicomponent fiber architectures that are able to switch from temporary configurations back to user-defined programmed shapes. In particular, we show that distinct designs of fabricated optical fibers can maintain efficient light transmission upon completion of multiple temperature-triggered bending/straightening cycles. Such fibers are also programmed into more complex shapes including coils or near 180 ° curvatures for delivering laser light around obstacles. Finally, a shape-memory exposed-core fiber is employed in fiber evanescent wave spectroscopy experiments to optimize the performance of the sensing scheme. We strongly expect that such actuatable fibers with light-guiding abilities will trigger exciting progress of unprecedented smart devices in the areas of photonics, electronics, or robotics.
Collapse
Affiliation(s)
- Clément Strutynski
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France.
| | - Marianne Evrard
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France
| | - Frédéric Désévédavy
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France
| | - Grégory Gadret
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France
| | - Jean-Charles Jules
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France
| | - Claire-Hélène Brachais
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France
| | - Bertrand Kibler
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France
| | - Frédéric Smektala
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne, 21078, Dijon, France
| |
Collapse
|
6
|
Strutynski C, Voivenel R, Evrard M, Désévédavy F, Gadret G, Jules JC, Brachais CH, Smektala F. Co-drawing of technical and high-performance thermoplastics with glasses via the molten core method. Sci Rep 2023; 13:5092. [PMID: 36991075 DOI: 10.1038/s41598-023-32174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Among the different fundamental aspects that govern the design and development of elongated multimaterial structures via the preform-to-fiber technique, material association methodologies hold a crucial role. They greatly impact the number, complexity and possible combinations of functions that can be integrated within single fibers, thus defining their applicability. In this work, a co-drawing strategy to produce monofilament microfibers from unique glass-polymer associations is investigated. In particular, the molten core-method (MCM) is applied to several amorphous and semi-crystalline thermoplastics for their integration within larger glass architectures. General conditions in which the MCM can be employed are established. It is demonstrated that the classical glass transition temperature compatibility requirements for glass-polymer associations can be overcome, and that other glass compositions than chalcogenides can be thermally stretched with thermoplastics, here oxide glasses are considered. Composite fibers with various geometries and compositional profiles are then presented to illustrate the versatility of the proposed methodology. Finally, investigations are focused on fibers produced from the association of poly ether ether ketone (PEEK) with tellurite and phosphate glasses. It is demonstrated that upon appropriate elongation conditions, the crystallization kinetics of PEEK can be controlled during the thermal stretching and crystallinities of the polymer as low as 9 mass. % are reached in the final fiber. It is believed such novel material associations as well as the ability to tailor material properties within fibers could inspire the development of a new class of hybrid elongated objects with unprecedented functionalities.
Collapse
Affiliation(s)
- Clément Strutynski
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France.
| | - Raphaël Voivenel
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Marianne Evrard
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Frédéric Désévédavy
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Gregory Gadret
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Jean-Charles Jules
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Claire-Hélène Brachais
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Frédéric Smektala
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
7
|
Marques C, Leal-Júnior A, Kumar S. Multifunctional Integration of Optical Fibers and Nanomaterials for Aircraft Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1433. [PMID: 36837063 PMCID: PMC9967808 DOI: 10.3390/ma16041433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/25/2023]
Abstract
Smart sensing for aeronautical applications is a multidisciplinary process that involves the development of various sensor elements and advancements in the nanomaterials field. The expansion of research has fueled the development of commercial and military aircrafts in the aeronautical field. Optical technology is one of the supporting pillars for this, as well as the fact that the unique high-tech qualities of aircrafts align with sustainability criteria. In this study, a multidisciplinary investigation of airplane monitoring systems employing optical technologies based on optical fiber and nanomaterials that are incorporated into essential systems is presented. This manuscript reports the multifunctional integration of optical fibers and nanomaterials for aircraft sector discussing topics, such as airframe monitoring, flight environment sensing (from temperature and humidity to pressure sensing), sensors for navigation (such as gyroscopes and displacement or position sensors), pilot vital health monitoring, and novel nanomaterials for aerospace applications. The primary objective of this review is to provide researchers with direction and motivation to design and fabricate the future of the aeronautical industry, based on the actual state of the art of such vital technology, thereby aiding their future research.
Collapse
Affiliation(s)
- Carlos Marques
- i3N & Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Arnaldo Leal-Júnior
- Mechanical Department and Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Espírito Santo 29075-910, Brazil
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
8
|
Sun S, Wang Z, Wang Y. Progress in Microtopography Optimization of Polymers-Based Pressure/Strain Sensors. Polymers (Basel) 2023; 15:polym15030764. [PMID: 36772064 PMCID: PMC9920621 DOI: 10.3390/polym15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Due to the wide application of wearable electronic devices in daily life, research into flexible electronics has become very attractive. Recently, various polymer-based sensors have emerged with great sensing performance and excellent extensibility. It is well known that different structural designs each confer their own unique, great impacts on the properties of materials. For polymer-based pressure/strain sensors, different structural designs determine different response-sensing mechanisms, thus showing their unique advantages and characteristics. This paper mainly focuses on polymer-based pressure-sensing materials applied in different microstructures and reviews their respective advantages. At the same time, polymer-based pressure sensors with different microstructures, including with respect to their working mechanisms, key parameters, and relevant operating ranges, are discussed in detail. According to the summary of its performance and mechanisms, different morphologies of microstructures can be designed for a sensor according to its performance characteristics and application scenario requirements, and the optimal structure can be adjusted by weighing and comparing sensor performances for the future. Finally, a conclusion and future perspectives are described.
Collapse
Affiliation(s)
- Shouheng Sun
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhenqin Wang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuting Wang
- Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Correspondence:
| |
Collapse
|
9
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Zhou C, Lin Z, Huang S, Li B, Gao A. Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. BIOSENSORS 2022; 12:943. [PMID: 36354452 PMCID: PMC9688418 DOI: 10.3390/bios12110943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Li
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Chang Y, Bao M, Waitkus J, Cai H, Du K. On-Demand Fully Enclosed Superhydrophobic-Optofluidic Devices Enabled by Microstereolithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10672-10678. [PMID: 35984448 PMCID: PMC9897971 DOI: 10.1021/acs.langmuir.2c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Superhydrophobic surface-based optofluidics have been introduced to biosensors and unconventional optics with unique advantages, such as low light loss and power consumption. However, most of these platforms were made with planar-like microstructures and nanostructures, which may cause bonding issues and result in significant waveguide loss. Here, we introduce a fully enclosed superhydrophobic-based optofluidics system, enabled by a one-step microstereolithography procedure. Various microstructured cladding designs with a feature size down to 100 μm were studied and a "T-type" overhang design exhibits the lowest optical loss, regardless of the excitation wavelength. Surprisingly, the optical loss of superhydrophobic-based optofluidics is not solely decided by the solid area fraction at the solid/water/air interface, but also the cross-section shape and the effective cladding layer composition. We show that this fully enclosed optofluidic system can be used for CRISPR-labeled quantum dot quantification, intended for in vitro and in vivo CRISPR therapeutics.
Collapse
Affiliation(s)
- Yu Chang
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jacob Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Haogang Cai
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, New York 10016, United States
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
12
|
Fiber Bragg Grating-Based Smart Garment for Monitoring Human Body Temperature. SENSORS 2022; 22:s22114252. [PMID: 35684873 PMCID: PMC9185545 DOI: 10.3390/s22114252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Body temperature provides an insight into the physiological state of a person, and body temperature changes reflect much information about human health. In this study, a garment for monitoring human body temperature based on fiber Bragg grating (FBG) sensors is reported. The FBG sensor was encapsulated with a PMMA tube and calibrated in the thermostatic water bath. The results showed that FBG sensors had good vibration resistance, and the wavelength changed about 0–1 pm at a 0.5–80 Hz vibration frequency. The bending path of the optical fiber after integration with clothing is discussed. When the bending radius is equal to or greater than 20 mm, a lower bending loss can be achieved even under the bending and stretching of the human body. The FBG sensor, the optical fiber, and the garment were integrated together using hot melt glue by the electric iron and the hot press machine. Through experiments of monitoring human body temperature, the sensor can reach the human armpit temperature in about 10–15 min with the upper arm close to the torso. Because it is immune to electromagnetic interferences, the smart garment can be used in some special environments such as ultrasonography, magnetic resonance (MR), and aerospace.
Collapse
|
13
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
14
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
15
|
Laser nano-filament explosion for enabling open-grating sensing in optical fibre. Nat Commun 2021; 12:6344. [PMID: 34732710 PMCID: PMC8566495 DOI: 10.1038/s41467-021-26671-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022] Open
Abstract
Embedding strong photonic stopbands into traditional optical fibre that can directly access and sense the outside environment is challenging, relying on tedious nano-processing steps that result in fragile thinned fibre. Ultrashort-pulsed laser filaments have recently provided a non-contact means of opening high-aspect ratio nano-holes inside of bulk transparent glasses. This method has been extended here to optical fibre, resulting in high density arrays of laser filamented holes penetrating transversely through the silica cladding and guiding core to provide high refractive index contrast Bragg gratings in the telecommunication band. The point‐by‐point fabrication was combined with post-chemical etching to engineer strong photonic stopbands directly inside of the compact and flexible fibre. Fibre Bragg gratings with sharply resolved π-shifts are presented for high resolution refractive index sensing from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n}_{{{{{{\rm{H}}}}}}}$$\end{document}nH = 1 to 1.67 as the nano-holes were readily wetted and filled with various solvents and oils through an intact fibre cladding. Engineered stop bands to sense an ambient environment can enable many applications. Here, the authors demonstrate well-controlled processes to open high-aspect ratio nanoholes through optical fibre for Bragg gratings in the telecomm spectrum and to enable high-resolution refractive index sensing
Collapse
|
16
|
Hynninen V, Patrakka J, Nonappa. Methylcellulose-Cellulose Nanocrystal Composites for Optomechanically Tunable Hydrogels and Fibers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5137. [PMID: 34576360 PMCID: PMC8465715 DOI: 10.3390/ma14185137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Chemical modification of cellulose offers routes for structurally and functionally diverse biopolymer derivatives for numerous industrial applications. Among cellulose derivatives, cellulose ethers have found extensive use, such as emulsifiers, in food industries and biotechnology. Methylcellulose, one of the simplest cellulose derivatives, has been utilized for biomedical, construction materials and cell culture applications. Its improved water solubility, thermoresponsive gelation, and the ability to act as a matrix for various dopants also offer routes for cellulose-based functional materials. There has been a renewed interest in understanding the structural, mechanical, and optical properties of methylcellulose and its composites. This review focuses on the recent development in optically and mechanically tunable hydrogels derived from methylcellulose and methylcellulose-cellulose nanocrystal composites. We further discuss the application of the gels for preparing highly ductile and strong fibers. Finally, the emerging application of methylcellulose-based fibers as optical fibers and their application potentials are discussed.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Espoo, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| |
Collapse
|
17
|
Hynninen V, Chandra S, Das S, Amini M, Dai Y, Lepikko S, Mohammadi P, Hietala S, Ras RHA, Sun Z, Ikkala O. Luminescent Gold Nanocluster-Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005205. [PMID: 33491913 DOI: 10.1002/smll.202005205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, Tampere, FI-33101, Finland
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Sourov Chandra
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Mohammad Amini
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Sakari Lepikko
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre, P. O. Box 1000, Espoo, FI-02044, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P. O. Box 55, Helsinki, FI-00014, Finland
| | - Robin H A Ras
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Olli Ikkala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| |
Collapse
|
18
|
Wu C, Liu X, Ying Y. Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sens 2021; 6:1446-1460. [PMID: 33611914 DOI: 10.1021/acssensors.0c02566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few decades, optical waveguides have been increasingly used in wearable/implantable devices for on-body sensing. However, conventional optical waveguides are stiff, rigid, and brittle. A mismatch between conventional optical waveguides and complex biointerfaces makes wearable/implantable devices uncomfortable to wear and potentially unsafe. Soft and stretchable polymer optical waveguides not only inherit many advantages of conventional optical waveguides (e.g., immunity to electromagnetic interference and without electrical hazards) but also provide a new perspective for solving the mismatch between conventional optical waveguides and complex biointerfaces, which is essential for the development of light-based wearable/implantable sensors. In this review, polymer optical waveguides' unique properties, including flexibility, biocompatibility and biodegradability, porosity, and stimulus responsiveness, and their applications in the wearable/implantable field in recent years are summarized. Then, we briefly discuss the current challenges of high optical loss, unstable signal transmission, low manufacturing efficiency, and difficulty in deployment during implantation of flexible polymer optical waveguides, and propose some possible solutions to these problems.
Collapse
Affiliation(s)
- Chenjian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
19
|
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. MATERIALS 2021; 14:ma14081972. [PMID: 33920842 PMCID: PMC8071099 DOI: 10.3390/ma14081972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Correspondence:
| | - Thomas Geernaert
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| |
Collapse
|
20
|
Design and Dispersion Control of Microstructured Multicore Tellurite Glass Fibers with In-Phase and Out-of-Phase Supermodes. PHOTONICS 2021. [DOI: 10.3390/photonics8040113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High nonlinearity and transparency in the 1–5 μm spectral range make tellurite glass fibers highly interesting for the development of nonlinear optical devices. For nonlinear optical fibers, group velocity dispersion that can be controlled by microstructuring is also of great importance. In this work, we present a comprehensive numerical analysis of dispersion and nonlinear properties of microstructured two-, four-, six-, and eight-core tellurite glass fibers for in-phase and out-of-phase supermodes and compare them with the results for one-core fibers in the near- and mid-infrared ranges. Out-of-phase supermodes in tellurite multicore fibers are studied for the first time, to the best of our knowledge. The dispersion curves for in-phase and out-of-phase supermodes are shifted from the dispersion curve for one-core fiber in opposite directions; the effect is stronger for large coupling between the fields in individual cores. The zero dispersion wavelengths of in-phase and out-of-phase supermodes shift to opposite sides with respect to the zero-dispersion wavelength of a one-core fiber. For out-of-phase supermodes, the dispersion can be anomalous even at 1.55 μm, corresponding to the operating wavelength of Er-doped fiber lasers.
Collapse
|
21
|
Microstructured Fibers Based on Tellurite Glass for Nonlinear Conversion of Mid-IR Ultrashort Optical Pulses. PHOTONICS 2020. [DOI: 10.3390/photonics7030051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compact fiber-based sources generating optical pulses with a broadband spectrum in the mid-IR range are in demand for basic science and many applications. Laser systems producing tunable Raman solitons in special soft-glass fibers are of great interest. Here, we report experimental microstructured tellurite fibers and demonstrate by numerical simulation their applicability for nonlinear soliton conversion in the mid-infrared (-IR) range via soliton self-frequency shift. The fiber dispersion and nonlinearity are calculated for experimental geometry. It is shown numerically that there are two zero dispersion wavelengths for the core size of 2 μm and less. In such fibers, efficient Raman soliton tuning is attained up to a central wavelength of 4.8 μm using pump pulses at 2.8 μm.
Collapse
|
22
|
Żmojda J, Kochanowicz M, Miluski P, Golonko P, Baranowska A, Ragiń T, Dorosz J, Kuwik M, Pisarski W, Pisarska J, Szal R, Mach G, Starzyk B, Leśniak M, Sitarz M, Dorosz D. Luminescent Studies on Germanate Glasses Doped with Europium Ions for Photonic Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2817. [PMID: 32585869 PMCID: PMC7345945 DOI: 10.3390/ma13122817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 11/18/2022]
Abstract
Glass and ceramic materials doped with rare earth (RE) ions have gained wide interest in photonics as active materials for lasers, optical amplifiers, and luminescent sensors. The emission properties of RE-doped glasses depend on their chemical composition, but they can also be tailored by modifying the surrounding active ions. Typically, this is achieved through heat treatment (including continuous-wave and pulsed lasers) after establishing the ordering mechanisms in the particular glass-RE system. Within the known systems, silicate glasses predominate, while much less work relates to materials with lower energy phonons, which allow more efficient radiation sources to be constructed for photonic applications. In the present work, the luminescent and structural properties of germanate glasses modified with phosphate oxide doped with Eu3+ ions were investigated. Europium dopant was used as a "spectroscopic probe" in order to analyze the luminescence spectra, which characterizes the changes in the local site symmetries of Eu3+ ions. Based on the spectroscopic results, a strong influence of P2O5 content was observed on the excitation and luminescence spectra. The luminescence study of the most intense 5D0→7F2 (electric dipole) transition revealed that the increase in the P2O5 content leads to the linewidth reduction (from 15 nm to 10 nm) and the blue shift (~2 nm) of the emission peak. According to the crystal field theory, the introduction of P2O5 into the glass structure changes the splitting number of sublevels of the 5D0→7F1 (magnetic dipole) transition, confirming the higher polymerization of fabricated glass. The slightly different local environment of Eu3+ centers the results in a number of sites and causes inhomogeneous broadening of spectral lines. It was found that the local asymmetry ratio estimated by the relation of (5D0→7F2)/(5D0→7F1) transitions also confirms greater changes in local symmetry around Eu3+ ions. Our results indicate that modification of germanate glass by P2O5 allows control of their structural properties in order to functionalize the emissions for application as luminescent light sources and sensors.
Collapse
Affiliation(s)
- Jacek Żmojda
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland; (M.K.); (P.M.); (P.G.); (J.D.)
| | - Marcin Kochanowicz
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland; (M.K.); (P.M.); (P.G.); (J.D.)
| | - Piotr Miluski
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland; (M.K.); (P.M.); (P.G.); (J.D.)
| | - Piotr Golonko
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland; (M.K.); (P.M.); (P.G.); (J.D.)
| | - Agata Baranowska
- Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Street, 15-351 Bialystok, Poland; (A.B.); (T.R.)
| | - Tomasz Ragiń
- Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Street, 15-351 Bialystok, Poland; (A.B.); (T.R.)
| | - Jan Dorosz
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland; (M.K.); (P.M.); (P.G.); (J.D.)
| | - Marta Kuwik
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland; (M.K.); (W.P.); (J.P.)
| | - Wojciech Pisarski
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland; (M.K.); (W.P.); (J.P.)
| | - Joanna Pisarska
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland; (M.K.); (W.P.); (J.P.)
| | - Renata Szal
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland; (R.S.); (G.M.); (B.S.); (M.L.); (M.S.); (D.D.)
| | - Gabriela Mach
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland; (R.S.); (G.M.); (B.S.); (M.L.); (M.S.); (D.D.)
| | - Bartosz Starzyk
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland; (R.S.); (G.M.); (B.S.); (M.L.); (M.S.); (D.D.)
| | - Magdalena Leśniak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland; (R.S.); (G.M.); (B.S.); (M.L.); (M.S.); (D.D.)
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland; (R.S.); (G.M.); (B.S.); (M.L.); (M.S.); (D.D.)
| | - Dominik Dorosz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland; (R.S.); (G.M.); (B.S.); (M.L.); (M.S.); (D.D.)
| |
Collapse
|
23
|
Chen S, Tong Y, Tian H. Eight-mode ring-core few-mode fiber using cross-arranged different-material-filling side holes. APPLIED OPTICS 2020; 59:4634-4641. [PMID: 32543572 DOI: 10.1364/ao.392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
We propose an eight-spatial-mode ring-core few-mode fiber (RC-FMF), utilizing the cross-arranged different-material-filling side holes (CA DMFSH) for effective index difference improvement. Two GeO2-doped-silica side holes and two air-filling side holes are arranged orthogonally around the ring core, which have directionally different effects on the refractive index and the mode field distribution in the RC-FMF. The results indicate that the effective index difference (Δneff) between adjacent spatial modes is larger than 1.96×10-4, and the Δneff between adjacent non-degenerated modes can be above 1.01×10-3 at the same time. Bend-resistant performance and low nonlinearity are achieved in the designed RC-FMF. Broadband performances ranging from 1510 to 1630 nm are also analyzed. The CA-DMFSH-assisted structure shows great potential for enlarging the effective index difference, and the proposed fiber targets applications in the short-reach space-division multiplexing optical networking while eliminating the complex multi-input/multi-output digital signal processing.
Collapse
|
24
|
Gauglitz G. Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal Bioanal Chem 2020; 412:3317-3349. [PMID: 32313998 PMCID: PMC7214504 DOI: 10.1007/s00216-020-02581-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Direct optical detection has proven to be a highly interesting tool in biomolecular interaction analysis to be used in drug discovery, ligand/receptor interactions, environmental analysis, clinical diagnostics, screening of large data volumes in immunology, cancer therapy, or personalized medicine. In this review, the fundamental optical principles and applications are reviewed. Devices are based on concepts such as refractometry, evanescent field, waveguides modes, reflectometry, resonance and/or interference. They are realized in ring resonators; prism couplers; surface plasmon resonance; resonant mirror; Bragg grating; grating couplers; photonic crystals, Mach-Zehnder, Young, Hartman interferometers; backscattering; ellipsometry; or reflectance interferometry. The physical theories of various optical principles have already been reviewed in detail elsewhere and are therefore only cited. This review provides an overall survey on the application of these methods in direct optical biosensing. The "historical" development of the main principles is given to understand the various, and sometimes only slightly modified variations published as "new" methods or the use of a new acronym and commercialization by different companies. Improvement of optics is only one way to increase the quality of biosensors. Additional essential aspects are the surface modification of transducers, immobilization strategies, selection of recognition elements, the influence of non-specific interaction, selectivity, and sensitivity. Furthermore, papers use for reporting minimal amounts of detectable analyte terms such as value of mass, moles, grams, or mol/L which are difficult to compare. Both these essential aspects (i.e., biochemistry and the presentation of LOD values) can be discussed only in brief (but references are provided) in order to prevent the paper from becoming too long. The review will concentrate on a comparison of the optical methods, their application, and the resulting bioanalytical quality.
Collapse
Affiliation(s)
- Günter Gauglitz
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
25
|
Microstructured optical fiber based Fabry-Pérot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring. Sci Rep 2020; 10:6002. [PMID: 32265462 PMCID: PMC7138795 DOI: 10.1038/s41598-020-62887-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 11/08/2022] Open
Abstract
This study reports a method for humidity sensing based on a specialty microstructured optical fiber (MOF). A suspended tri-core MOF was fabricated using the stack and draw technique. A low finesse sensing head was prepared by depositing a chitosan polymer matrix within the holes of the MOF, forming a Fabry-Pérot interferometer as a sensing platform while the chitosan film acts as the sensing material. The use of the probe for real-time breath monitoring was also successfully demonstrated. The probe possessed a maximum sensitivity of 81.05 pm/(%RH) for 90-95%RH range while the linear region of the sensor ranged from 70-95%RH. The temperature cross correlation was also experimented, and a lower influence of external temperature was observed. The probe shows an ultrafast response during human breath monitoring with a rising time and recovery time of 80 ms and 70 ms, respectively.
Collapse
|
26
|
Nikoniuk D, Bednarska K, Sienkiewicz M, Krzesiński G, Olszyna M, Dähne L, Woliński TR, Lesiak P. Polymer Fibers Covered by Soft Multilayered Films for Sensing Applications in Composite Materials. SENSORS 2019; 19:s19184052. [PMID: 31546960 PMCID: PMC6767333 DOI: 10.3390/s19184052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023]
Abstract
This paper presents the possibility of applying a soft polymer coating by means of a layer-by-layer (LbL) technique to highly birefringent polymer optical fibers designed for laminating in composite materials. In contrast to optical fibers made of pure silica glass, polymer optical fibers are manufactured without a soft polymer coating. In typical sensor applications, the absence of a buffer coating is an advantage. However, highly birefringent polymer optical fibers laminated in a composite material are much more sensitive to temperature changes than polymer optical fibers in a free space as a result of the thermal expansion of the composite material. To prevent this, we have covered highly birefringent polymer optical fibers with a soft polymer coating of different thickness and measured the temperature sensitivity of each solution. The results obtained show that the undesired temperature sensitivity of the laminated optical fiber decreases as the thickness of the coating layer increases.
Collapse
Affiliation(s)
- Dorian Nikoniuk
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland.
| | - Karolina Bednarska
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland.
| | - Maksymilian Sienkiewicz
- Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland.
| | - Grzegorz Krzesiński
- Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland.
| | | | - Lars Dähne
- Surflay Nanotec GmbH, 12489 Berlin, Germany.
| | - Tomasz R Woliński
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland.
| | - Piotr Lesiak
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland.
| |
Collapse
|
27
|
Guo J, Yang C, Dai Q, Kong L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3771. [PMID: 31480393 PMCID: PMC6749420 DOI: 10.3390/s19173771] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
The past decades have witnessed the rapid development in soft, stretchable, and biocompatible devices for applications in biomedical monitoring, personal healthcare, and human-machine interfaces. In particular, the design of soft devices in optics has attracted tremendous interests attributed to their distinct advantages such as inherent electrical safety, high stability in long-term operation, potential to be miniaturized, and free of electromagnetic interferences. As the alternatives to conventional rigid optical waveguides, considerable efforts have been made to develop light-guiding devices by using various transparent and elastic polymers, which offer desired physiomechanical properties and enable wearable/implantable applications in optical sensing, diagnostics, and therapy. Here, we review recent progress in soft and stretchable optical waveguides and sensors, including advanced structural design, fabrication strategies, and functionalities. Furthermore, the potential applications of those optical devices for various wearable and biomedical applications are discussed. It is expected that the newly emerged soft and stretchable optical technologies will provide a safe and reliable alternative to next-generation, smart wearables and healthcare devices.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|