1
|
Michaeli L, Doron O, Hadad Y, Suchowski H, Ellenbogen T. Rayleigh anomaly induced phase gradients in finite nanoparticle chains. NANOSCALE 2023; 15:13653-13665. [PMID: 37551740 DOI: 10.1039/d3nr02293e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Collective optical interactions in infinite nanoparticle arrays have been studied intensively over the past decade. However, analysis of finite arrays has received significantly less attention. Here, we theoretically and numerically show that the collective interaction in finite nanoparticle chains can support phase gradients that shift the diffraction pattern with respect to infinite chains. Specifically, we demonstrate that this phenomenon occurs for resonating nanoparticles in a narrow spectral range around the Rayleigh anomaly condition, i.e., when a certain diffraction order radiates at a grazing angle. This reveals that the Rayleigh anomaly, which is associated with intensity changes, can also induce angular anomalies in finite arrays. To study the effect theoretically, we develop a novel analytical approach based on the discrete dipole approximation. Within this framework, we find an approximate closed-form solution to the particles' dipole moments. We show that our solution can be expressed in two different ways, one based on a combinatorial calculation, and the other on a recursive calculation, and discuss the unique physical interpretation emerging from each of them. Our results are of potential importance in a wide range of practical applications from LIDARs to beam shaping schemes.
Collapse
Affiliation(s)
- Lior Michaeli
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel.
- Raymond and Beverly Sackler School of Physics & Astronomy, Tel-Aviv University, Tel-Aviv 6779801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| | - Ofer Doron
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel.
- Raymond and Beverly Sackler School of Physics & Astronomy, Tel-Aviv University, Tel-Aviv 6779801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| | - Yakir Hadad
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel.
| | - Haim Suchowski
- Raymond and Beverly Sackler School of Physics & Astronomy, Tel-Aviv University, Tel-Aviv 6779801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| | - Tal Ellenbogen
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel.
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| |
Collapse
|
2
|
Bosomtwi D, Babicheva VE. Beyond Conventional Sensing: Hybrid Plasmonic Metasurfaces and Bound States in the Continuum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1261. [PMID: 37049354 PMCID: PMC10097206 DOI: 10.3390/nano13071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Fano resonances result from the strong coupling and interference between a broad background state and a narrow, almost discrete state, leading to the emergence of asymmetric scattering spectral profiles. Under certain conditions, Fano resonances can experience a collapse of their width due to the destructive interference of strongly coupled modes, resulting in the formation of bound states in the continuum (BIC). In such cases, the modes are simultaneously localized in the nanostructure and coexist with radiating waves, leading to an increase in the quality factor, which is virtually unlimited. In this work, we report on the design of a layered hybrid plasmonic-dielectric metasurface that facilitates strong mode coupling and the formation of BIC, resulting in resonances with a high quality factor. We demonstrate the possibility of controlling Fano resonances and tuning Rabi splitting using the nanoantenna dimensions. We also experimentally demonstrate the generalized Kerker effect in a binary arrangement of silicon nanodisks, which allows for the tuning of the collective modes and creates new photonic functionalities and improved sensing capabilities. Our findings have promising implications for developing plasmonic sensors that leverage strong light-matter interactions in hybrid metasurfaces.
Collapse
Affiliation(s)
- Dominic Bosomtwi
- Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, NM 87106-4343, USA
| | - Viktoriia E. Babicheva
- Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM 87106-4343, USA
| |
Collapse
|
3
|
Gai B, Guo J, Jin Y. Lattice relaxation effects on the collective resonance spectra of a finite dipole array. Phys Chem Chem Phys 2023; 25:10054-10062. [PMID: 36970935 DOI: 10.1039/d3cp00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Applying lattice parameter relaxation on a finite photonic crystal can adjust the smoothness of its surface lattice resonance spectral peak.
Collapse
Affiliation(s)
- Baodong Gai
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jingwei Guo
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yuqi Jin
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
4
|
Zundel L, Deop-Ruano JR, Martinez-Herrero R, Manjavacas A. Lattice Resonances Excited by Finite-Width Light Beams. ACS OMEGA 2022; 7:31431-31441. [PMID: 36092601 PMCID: PMC9453969 DOI: 10.1021/acsomega.2c03847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 05/25/2023]
Abstract
Periodic arrays of metallic nanostructures support collective lattice resonances, which give rise to optical responses that are, at the same time, stronger and more spectrally narrow than those of the localized plasmons of the individual nanostructures. Despite the extensive research effort devoted to investigating the optical properties of lattice resonances, the majority of theoretical studies have analyzed them under plane-wave excitation conditions. Such analysis not only constitutes an approximation to realistic experimental conditions, which require the use of finite-width light beams, but also misses a rich variety of interesting behaviors. Here, we provide a comprehensive study of the response of periodic arrays of metallic nanostructures when excited by finite-width light beams under both paraxial and nonparaxial conditions. We show how as the width of the light beam increases, the response of the array becomes more collective and converges to the plane-wave limit. Furthermore, we analyze the spatial extent of the lattice resonance and identify the optimum values of the light beam width to achieve the strongest optical responses. We also investigate the impact that the combination of finite-size effects in the array and the finite width of the light beam has on the response of the system. Our results provide a solid theoretical framework to understand the excitation of lattice resonances by finite-width light beams and uncover a set of behaviors that do not take place under plane-wave excitation.
Collapse
Affiliation(s)
- Lauren Zundel
- Department
of Physics and Astronomy, University of
New Mexico, Albuquerque, New Mexico 87106, United States
| | - Juan R. Deop-Ruano
- Instituto
de Óptica (IO-CSIC), Consejo Superior de Investigaciones
Científicas, 28006 Madrid, Spain
| | | | - Alejandro Manjavacas
- Department
of Physics and Astronomy, University of
New Mexico, Albuquerque, New Mexico 87106, United States
- Instituto
de Óptica (IO-CSIC), Consejo Superior de Investigaciones
Científicas, 28006 Madrid, Spain
| |
Collapse
|
5
|
Abstract
Dielectric metasurfaces have emerged as a promising alternative to their plasmonic counterparts due to lower ohmic losses, which hinder sensing applications and nonlinear frequency conversion, and their larger flexibility to shape the emission pattern in the visible regime. To date, the computational cost of full-wave numerical simulations has forced the exploitation of the Floquet theorem, which implies infinitely periodic structures, in designing such devices. In this work, we show the potential pitfalls of this approach when considering finite-size metasurfaces and beam-like illumination conditions, in contrast to the typical infinite plane-wave illumination compatible with the Floquet theorem.
Collapse
|