1
|
Quince Z, Westerman N, Alonso-Caneiro D, Read SA, Collins MJ. Anterior segment applications of optical coherence elastography in ophthalmic and vision science: a systematic review of intrinsic measurement techniques and clinical relevance. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:032001. [PMID: 40328290 DOI: 10.1088/2516-1091/add4d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Optical coherence elastography (OCE) is a non-invasive imaging technique that measures the biomechanical properties of materials and tissues. This systematic review focuses on the applications of OCE in the anterior segment of the eye, including the cornea, iris, and crystalline lens, and its clinical relevance in diagnosing and managing ocular diseases. A systematic literature review was conducted using the PRISMA framework to identify studies published between 2014 and 2024. The review included studies that reported intrinsic biomechanical properties of anterior segment tissues measured using OCE. Databases searched included Scopus, Pub Med, and IEEE Xplore. Twenty-five studies met the inclusion criteria. The review found that OCE has been used to measure intrinsic biomechanical parameters such as Young's modulus and shear modulus in ocular tissues. OCE has been utilised to assess corneal stiffness in keratoconus, lens elasticity in presbyopia and cataract formation, and iris biomechanical changes under different lighting conditions. The studies demonstrated that OCE could detect subtle biomechanical changes associated with ocular diseases and measure treatment efficacy, such as collagen crosslinking for keratoconus management. The findings highlight the potential of OCE to enhance clinical diagnostics and patient care by providing detailed insights into the biomechanical properties of ocular tissues. However, variability in measurement techniques, the complexity of the method and reliance on animal models limit the current clinical translation of OCE. Standardised measurement protocols and further development andin vivovalidation are needed to overcome these barriers. OCE shows promise as a valuable non-invasive tool for high-resolution assessments of tissue biomechanics, which can subsequently support the diagnosis and management of ocular diseases. Future research should focus on standardising OCE methods and integrating them into clinical practice to fully realise their potential in improving patient outcomes.
Collapse
Affiliation(s)
- Zachery Quince
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Nicola Westerman
- School of Engineering, University of Southern Queensland, Springfield, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- School of Science, Technology and Engineering, University of Sunshine Coast, Petrie, Queensland, Australia
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
2
|
Nair A, Singh M, Aglyamov SR, Larin KV. Convolutional Neural Networks Enable Direct Strain Estimation in Quasistatic Optical Coherence Elastography. JOURNAL OF BIOPHOTONICS 2025:e202400386. [PMID: 40364546 DOI: 10.1002/jbio.202400386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Assessing the biomechanical properties of tissues can provide important information for disease diagnosis and therapeutic monitoring. Optical coherence elastography (OCE) is an emerging technology for measuring the biomechanical properties of tissues. Clinical translation of this technology is underway, and steps are being implemented to streamline data collection and processing. OCE data can be noisy, data processing can require significant manual tuning, and a single acquisition may contain gigabytes of data. In this work, we introduce a convolutional neural network-based method to translate raw OCE phase data to strain for quasistatic OCE that is ~40X faster than the conventional least squares approach by bypassing many intermediate data processing steps. The results suggest that a machine learning approach may be a valuable tool for fast, efficient, and accurate extraction of biomechanical information from raw OCE data.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Salavat R Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Kiseleva EB, Sovetsky AA, Ryabkov MG, Gubarkova EV, Plekhanov AA, Bederina EL, Potapov AL, Bogomolova AY, Zaitsev VY, Gladkova ND. Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: A pilot study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400086. [PMID: 38923316 DOI: 10.1002/jbio.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
We report a new application of compression optical coherence elastography (C-OCE) to monitor the emergence of ruptures in individual layers of longitudinally stretched small-intestine walls using tissue samples (n = 36) from nine minipigs. Before stretching, C-OCE successfully estimated stiffness for each intestine-wall layer: longitudinal muscular layer with serosa, circumferential muscular layer, submucosa and mucosa. In stretched samples, C-OCE clearly visualized initial stiffening in both muscular layers. By 25% elongation, a sharp stiffness decrease for the longitudinal muscular layer, indicated emergence of tears in all samples. With further stretching, for most samples, ruptures emerged in the circumferential muscular layer and submucosa, while mucosa remained undamaged. Histology confirmed the OCE-revealed damaging and absence of tissue damage for ~15% elongation. Thus, C-OCE has demonstrated a high potential for determining the safety tissue-stretching threshold which afterward may be used intraoperatively to prevent rupture risk in intestinal tissues stretched during various diagnostic/therapeutic procedures.
Collapse
Affiliation(s)
- Elena B Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Maksim G Ryabkov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina V Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anton A Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Evgeniya L Bederina
- University Clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Arseniy L Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Y Bogomolova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vladimir Y Zaitsev
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Natalia D Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Alexandrovskaya YM, Kasianenko EM, Sovetsky AA, Matveyev AL, Atyakshin DA, Patsap OI, Ignatiuk MA, Volodkin AV, Zaitsev VY. Optical coherence elastography with osmotically induced strains: Preliminary demonstration for express detection of cartilage degradation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400016. [PMID: 38702959 DOI: 10.1002/jbio.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Optical coherence elastography (OCE) demonstrated impressive abilities for diagnosing tissue types/states using differences in their biomechanics. Usually, OCE visualizes tissue deformation induced by some additional stimulus (e.g., contact compression or auxiliary elastic-wave excitation). We propose a new variant of OCE with osmotically induced straining (OIS-OCE) and demonstrate its application to assess various stages of proteoglycan content degradation in cartilage. The information-bearing signatures in OIS-OCE are the magnitude and rate of strains caused by the application of osmotically active solutions onto the sample surface. OCE examination of the induced strains does not require special tissue preparation, the osmotic stimulation is highly reproducible, and strains are observed in noncontact mode. Several minutes suffice to obtain a conclusion. These features are promising for intraoperative method usage when express assessment of tissue state is required during surgical operations. The "waterfall" images demonstrate the development of cumulative osmotic strains in control and degraded cartilage samples.
Collapse
Affiliation(s)
| | - Ekaterina M Kasianenko
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
- National Research Center Kurchatov Institute, Moscow, Russia
| | - Alexander A Sovetsky
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry A Atyakshin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Olga I Patsap
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Mikhail A Ignatiuk
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Artem V Volodkin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Vladimir Y Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Nair A, Zvietcovich F, Singh M, Weikert MP, Aglyamov SR, Larin KV. Optical coherence elastography measures the biomechanical properties of the ex vivo porcine cornea after LASIK. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:016002. [PMID: 38223300 PMCID: PMC10787573 DOI: 10.1117/1.jbo.29.1.016002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Significance The biomechanical impact of refractive surgery has long been an area of investigation. Changes to the cornea structure cause alterations to its mechanical integrity, but few studies have examined its specific mechanical impact. Aim To quantify how the biomechanical properties of the cornea are altered by laser assisted in situ keratomileusis (LASIK) using optical coherence elastography (OCE) in ex vivo porcine corneas. Approach Three OCE techniques, wave-based air-coupled ultrasound (ACUS) OCE, heartbeat (Hb) OCE, and compression OCE were used to measure the mechanical properties of paired porcine corneas, where one eye of the pair was left untreated, and the fellow eye underwent LASIK. Changes in stiffness as a function of intraocular pressure (IOP) before and after LASIK were measured using each technique. Results ACUS-OCE showed that corneal stiffness changed as a function of IOP for both the untreated and the treated groups. The elastic wave speed after LASIK was lower than before LASIK. Hb-OCE and compression OCE showed regional changes in corneal strain after LASIK, where the absolute strain difference between the cornea anterior and posterior increased after LASIK. Conclusions The results of this study suggest that LASIK may soften the cornea and that these changes are largely localized to the region where the surgery was performed.
Collapse
Affiliation(s)
- Achuth Nair
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | | | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Mitchell P. Weikert
- Baylor College of Medicine, Cullen Eye Institute, Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Baylor College of Medicine, Department of Physiology and Biophysics, Houston, Texas, United States
| |
Collapse
|
6
|
Wang C, Zhu J, Ma J, Meng X, Ma Z, Fan F. Optical coherence elastography and its applications for the biomechanical characterization of tissues. JOURNAL OF BIOPHOTONICS 2023; 16:e202300292. [PMID: 37774137 DOI: 10.1002/jbio.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
The biomechanical characterization of the tissues provides significant evidence for determining the pathological status and assessing the disease treatment. Incorporating elastography with optical coherence tomography (OCT), optical coherence elastography (OCE) can map the spatial elasticity distribution of biological tissue with high resolution. After the excitation with the external or inherent force, the tissue response of the deformation or vibration is detected by OCT imaging. The elastogram is assessed by stress-strain analysis, vibration amplitude measurements, and quantification of elastic wave velocities. OCE has been used for elasticity measurements in ophthalmology, endoscopy, and oncology, improving the precision of diagnosis and treatment of disease. In this article, we review the OCE methods for biomechanical characterization and summarize current OCE applications in biomedicine. The limitations and future development of OCE are also discussed during its translation to the clinic.
Collapse
Affiliation(s)
- Chongyang Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | | | - Jiawei Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Xiaochen Meng
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Zongqing Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
7
|
Ma G, Cai J, Zhong R, He W, Ye H, Duvvuri C, Song C, Feng J, An L, Qin J, Huang Y, Xu J, Twa MD, Lan G. Corneal Surface Wave Propagation Associated with Intraocular Pressures: OCT Elastography Assessment in a Simplified Eye Model. Bioengineering (Basel) 2023; 10:754. [PMID: 37508781 PMCID: PMC10376591 DOI: 10.3390/bioengineering10070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Assessing corneal biomechanics in vivo has long been a challenge in the field of ophthalmology. Despite recent advances in optical coherence tomography (OCT)-based elastography (OCE) methods, controversy remains regarding the effect of intraocular pressure (IOP) on mechanical wave propagation speed in the cornea. This could be attributed to the complexity of corneal biomechanics and the difficulties associated with conducting in vivo corneal shear-wave OCE measurements. We constructed a simplified artificial eye model with a silicone cornea and controllable IOPs and performed surface wave OCE measurements in radial directions (54-324°) of the silicone cornea at different IOP levels (10-40 mmHg). The results demonstrated increases in wave propagation speeds (mean ± STD) from 6.55 ± 0.09 m/s (10 mmHg) to 9.82 ± 0.19 m/s (40 mmHg), leading to an estimate of Young's modulus, which increased from 145.23 ± 4.43 kPa to 326.44 ± 13.30 kPa. Our implementation of an artificial eye model highlighted that the impact of IOP on Young's modulus (ΔE = 165.59 kPa, IOP: 10-40 mmHg) was more significant than the effect of stretching of the silicone cornea (ΔE = 15.79 kPa, relative elongation: 0.98-6.49%). Our study sheds light on the potential advantages of using an artificial eye model to represent the response of the human cornea during OCE measurement and provides valuable insights into the impact of IOP on wave-based OCE measurement for future in vivo corneal biomechanics studies.
Collapse
Affiliation(s)
- Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China
| | - Jing Cai
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Rijian Zhong
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Haoxi Ye
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | | | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| |
Collapse
|
8
|
Li R, Qian X, Gong C, Zhang J, Liu Y, Xu B, Humayun MS, Zhou Q. Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography. IEEE Trans Biomed Eng 2023; 70:1310-1317. [PMID: 36260593 PMCID: PMC10365545 DOI: 10.1109/tbme.2022.3215498] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Current elastography techniques in the field of ophthalmology usually target one specific tissue, such as the cornea or the sclera. However, the eye is an inter-related organ, and some ocular diseases can alter the biomechanical properties of multiple anatomical structures. Hence, there is a need to develop an imaging tool that can non-invasively, quantitatively, and accurately characterize dynamic changes among these biomechanical properties. METHODS A high resolution ultrasound elastography system was developed to achieve this goal. The efficacy and accuracy of the system was first validated on tissue-mimicking phantoms while mechanical testing measurements served as the gold standard. Next, an in vivo elevated intraocular pressure (IOP) model was established in rabbits to further test our system. In particular, elastography measurements were obtained at 5 IOP levels, ranging from 10 mmHg to 30 mmHg in 5 mmHg increments. Spatial-temporal maps of the multiple ocular tissues (cornea, lens, iris, optic nerve head, and peripapillary sclera) were obtained. RESULTS The spatial-temporal maps were acquired simultaneously for the ocular tissues at the 5 different IOP levels. The statistical analysis of the elastic wave speed was presented for ocular tissues. Finally, the mapping for the elastic wave speed of each ocular component was acquired at each IOP level. CONCLUSION Our elastography system can concurrently assess the biomechanical properties of multiple ocular structures and detect changes in biomechanical properties associated with changes in IOP. SIGNIFICANCE This system provides a novel tool to measure and quantify the biomechanical properties of the whole eye.
Collapse
|
9
|
Zaitsev VY, Sovetsky AA, Matveyev AL, Matveev LA, Shabanov D, Salamatova VY, Karavaikin PA, Vassilevski YV. Application of compression optical coherence elastography for characterization of human pericardium: A pilot study. JOURNAL OF BIOPHOTONICS 2023; 16:e202200253. [PMID: 36397665 DOI: 10.1002/jbio.202200253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The recent impressive progress in Compression Optical Coherence Elastography (C-OCE) demonstrated diverse biomedical applications, comprising ophthalmology, oncology, etc. High resolution of C-OCE enables spatially resolved characterization of elasticity of rather thin (thickness < 1 mm) samples, which previously was impossible. Besides Young's modulus, C-OCE enables obtaining of nonlinear stress-strain dependences for various tissues. Here, we report the first application of C-OCE to nondestructively characterize biomechanics of human pericardium, for which data of conventional tensile tests are very limited and controversial. C-OCE revealed pronounced differences among differently prepared pericardium samples. Ample understanding of the influence of chemo-mechanical treatment on pericardium biomechanics is very important because of rapidly growing usage of own patients' pericardium for replacement of aortic valve leaflets in cardio-surgery. The figure demonstrates differences in the tangent Young's modulus after glutaraldehyde-induced cross-linking for two pericardium samples. One sample was over-stretched during the preparation, which caused some damage to the tissue.
Collapse
Affiliation(s)
- Vladimir Y Zaitsev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Lev A Matveev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry Shabanov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Victoria Y Salamatova
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | | | - Yuri V Vassilevski
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Lopes BT, Elsheikh A. In Vivo Corneal Stiffness Mapping by the Stress-Strain Index Maps and Brillouin Microscopy. Curr Eye Res 2023; 48:114-120. [PMID: 35634717 DOI: 10.1080/02713683.2022.2081979] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of corneal stiffness in vivo has numerous clinical applications such as the measurement of intraocular pressure, the preoperative screening for iatrogenic ectasia after laser vision correction surgery and the diagnosis and treatment of corneal ectatic diseases such as keratoconus. The localised aspect of the microstructure deterioration in keratoconus leading to local biomechanical softening, corneal bulging, irregular astigmatism and ultimately loss of vision boosted the need to map the corneal stiffness to identify the regional biomechanical failure. Currently, two methods to map the corneal stiffness in vivo are integrated into devices that are either already commercially available or about to be commercialised: the stress-strain index (SSI) maps and the Brillouin Microscopy (BM). The former method produces 2D map of stiffness across the corneal surface, developed through numerical simulations using the corneal shape, its microstructure content, and the deformation behaviour under air-puff excitation. It estimates the whole stress-strain behaviour, making it possible to obtain the material tangent modulus under different intraocular pressure levels. On the other hand, BM produces a 3D map of the corneal longitudinal modulus across the corneal surface and thickness. It uses a low-power near-infrared laser beam and through a spectral analysis of the returned signal, it assesses the mechanical compressibility of the tissue as measured by the longitudinal modulus. In this paper, these two techniques are reviewed, and their advantages and limitations discussed.
Collapse
Affiliation(s)
- Bernardo T Lopes
- School of Engineering, University of Liverpool, Liverpool, UK.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, UK.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,National Institute for Health Research (NIHR) Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
11
|
Gao T, Liu S, Wang A, Tang X, Fan Y. Vascular elasticity measurement of the great saphenous vein based on optical coherence elastography. JOURNAL OF BIOPHOTONICS 2023; 16:e202200245. [PMID: 36067058 DOI: 10.1002/jbio.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Vascular elasticity is important in physiological and clinical problems. The mechanical properties of the great saphenous vein (GSV) deserve attention. This research aims to measure the radial elasticity of ex vivo GSV using the optical coherence elasticity (OCE). The finite element model of the phantom is established, the displacement field is calculated, the radial mechanical characteristics of the simulation body are obtained. Furthermore, we performed OCE on seven isolated GSVs. The strain field is obtained by combining the relationship between strain and displacement to obtain the radial elastic modulus of GSVs. In the phantom experiment, the strain of the experimental region of interest is mainly between 0.1 and 0.4, while the simulation result is between 0.06 and 0.40. The radial elastic modulus of GSVs ranged from 3.83 kPa to 7.74 kPa. This study verifies the feasibility of the OCE method for measuring the radial elastic modulus of blood vessels.
Collapse
Affiliation(s)
- Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shuai Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ancong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
Nair A, Ambekar YS, Zevallos-Delgado C, Mekonnen T, Sun M, Zvietcovich F, Singh M, Aglyamov S, Koch M, Scarcelli G, Espana EM, Larin KV. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 36383352 PMCID: PMC9680591 DOI: 10.1167/iovs.63.12.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. Methods A three-prong optical elastography approach was used to investigate the mechanical properties of the cornea. Brillouin microscopy, air-coupled ultrasonic optical coherence elastography (OCE) and heartbeat OCE were used to assess the mechanical properties of wild type (WT) and collagen XII-deficient (Col12a1-/-) murine corneas. The Brillouin frequency shift, elastic wave speed, and compressive strain were all measured as a function of intraocular pressure (IOP). Results All three optical elastography modalities measured a significantly decreased stiffness in the Col12a1-/- compared to the WT (P < 0.01 for all three modalities). The optical coherence elastography techniques showed that mean stiffness increased as a function of IOP; however, Brillouin microscopy showed no discernable trend in Brillouin frequency shift as a function of IOP. Conclusions Our approach suggests that the absence of collagen XII significantly softens the cornea. Although both optical coherence elastography techniques showed an expected increase in corneal stiffness as a function of IOP, Brillouin microscopy did not show such a relationship, suggesting that the Brillouin longitudinal modulus may not be affected by changes in IOP. Future work will focus on multimodal biomechanical models, evaluating the effects of other collagen types on corneal stiffness, and in vivo measurements.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yogeshwari S. Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Fernando Zvietcovich
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima, Peru
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Molecular Medicine Cologne, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
13
|
Li J, Pijewska E, Fang Q, Szkulmowski M, Kennedy BF. Analysis of strain estimation methods in phase-sensitive compression optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2224-2246. [PMID: 35519281 PMCID: PMC9045929 DOI: 10.1364/boe.447340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 05/11/2023]
Abstract
In compression optical coherence elastography (OCE), deformation is quantified as the local strain at each pixel in the OCT field-of-view. A range of strain estimation methods have been demonstrated, yet it is unclear which method provides the best performance. Here, we analyze the two most prevalent strain estimation methods used in phase-sensitive compression OCE, i.e., weighted least squares (WLS) and the vector method. We introduce a framework to compare strain imaging metrics, incorporating strain sensitivity, strain signal-to-noise ratio (SNR), strain resolution, and strain accuracy. In addition, we propose a new phase unwrapping algorithm in OCE, fast phase unwrapping (FPU), and combine it with WLS, termed WLSFPU. Using the framework, we compare this new strain estimation method with both a current implementation of WLS that incorporates weighted phase unwrapping (WPU), termed WLSWPU, and the vector method. Our analysis reveals that the three methods provide similar strain sensitivity, strain SNR, and strain resolution, but that WLSFPU extends the dynamic range of accurate, measurable local strain, e.g., measuring a strain of 2.5 mɛ with ∼4% error, that is ×11 and ×15 smaller than the error measured using WLSWPU and the vector method, respectively. We also demonstrate, for the first time, the capability to detect sub-resolution contrast in compression OCE, i.e., changes in strain occurring within the strain axial resolution, and how this contrast varies between the different strain estimation methods. Lastly, we compare the performance of the three strain estimation methods on mouse skeletal muscle and human breast tissue and demonstrate that WLSFPU avoids strain imaging artifacts resulting from phase unwrapping errors in WLSWPU and provides improved contrast over the other two methods.
Collapse
Affiliation(s)
- Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley 6009, Australia
- Australian Research Council Centre for Personalized Therapeutics Technologies, Australia
- These authors contributed equally to this work
| | - Ewelina Pijewska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
- These authors contributed equally to this work
| | - Qi Fang
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley 6009, Australia
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley 6009, Australia
- Australian Research Council Centre for Personalized Therapeutics Technologies, Australia
| |
Collapse
|
14
|
Alexandrovskaya Y, Baum O, Sovetsky A, Matveyev A, Matveev L, Sobol E, Zaitsev V. Optical Coherence Elastography as a Tool for Studying Deformations in Biomaterials: Spatially-Resolved Osmotic Strain Dynamics in Cartilaginous Samples. MATERIALS (BASEL, SWITZERLAND) 2022; 15:904. [PMID: 35160851 PMCID: PMC8838169 DOI: 10.3390/ma15030904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
This paper presents a recently developed variant of phase-resolved Optical Coherence Elastography (OCE) enabling non-contact visualization of transient local strains of various origins in biological tissues and other materials. In this work, we demonstrate the possibilities of this new technique for studying dynamics of osmotically-induced strains in cartilaginous tissue impregnated with optical clearing agents (OCA). For poroelastic water-containing biological tissues, application of non-isotonic OCAs, various contrast additives, as well as drug solutions administration, may excite transient spatially-inhomogeneous strain fields of high magnitude in the tissue bulk, initiating mechanical and structural alterations. The range of the strain reliably observed by OCE varied from ±10-3 to ±0.4 for diluted and pure glycerol, correspondingly. The OCE-technique used made it possible to reveal previously inaccessible details of the complex spatio-temporal evolution of alternating-sign osmotic strains at the initial stages of agent diffusion. Qualitatively different effects produced by particular hydrophilic OCAs, such as glycerol and iohexol, are discussed, as well as concentration-dependent differences. Overall, the work demonstrates the unique abilities of the new OCE-modality in providing a deeper insight in real-time kinetics of osmotically-induced strains relevant to a broad range of biomedical applications.
Collapse
Affiliation(s)
- Yulia Alexandrovskaya
- Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 2 Pionerskaya Street, Troitsk, 108840 Moscow, Russia;
| | - Olga Baum
- Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 2 Pionerskaya Street, Troitsk, 108840 Moscow, Russia;
| | - Alexander Sovetsky
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| | - Alexander Matveyev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| | - Lev Matveev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| | - Emil Sobol
- UCI Health Beckman Laser Institute & Medical Clinic, 1002 Health Sciences Rd., Irvine, CA 92612, USA;
| | - Vladimir Zaitsev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| |
Collapse
|
15
|
Dong B, Huang N, Bai Y, Xie S. Deep-learning-based approach for strain estimation in phase-sensitive optical coherence elastography. OPTICS LETTERS 2021; 46:5914-5917. [PMID: 34851922 DOI: 10.1364/ol.446403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In this Letter, a deep-learning-based approach is proposed for estimating the strain field distributions in phase-sensitive optical coherence elastography. The method first uses the simulated wrapped phase maps and corresponding phase-gradient maps to train the strain estimation convolution neural network (CNN) and then employs the trained CNN to calculate the strain fields from measured phase-difference maps. Two specimens with different deformations, one with homogeneous and the other with heterogeneous, were measured for validation. The strain field distributions of the specimens estimated by different approaches were compared. The results indicate that the proposed deep-learning-based approach features much better performance than the popular vector method, enhancing the SNR of the strain results by 21.6 dB.
Collapse
|
16
|
Matveyev AL, Matveev LA, Moiseev AA, Sovetsky AA, Gelikonov GV, Zaitsev VY. Simulating scan formation in multimodal optical coherence tomography: angular-spectrum formulation based on ballistic scattering of arbitrary-form beams. BIOMEDICAL OPTICS EXPRESS 2021; 12:7599-7615. [PMID: 35003855 PMCID: PMC8713662 DOI: 10.1364/boe.440739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 06/14/2023]
Abstract
We present a computationally highly efficient full-wave spectral model of OCT-scan formation with the following features: allowance of arbitrary phase-amplitude profile of illuminating beams; absence of paraxial approximation; utilization of broadly used approximation of ballistic scattering by discrete scatterers without limitations on their density/location and scattering strength. The model can easily incorporate the wave decay, dispersion, measurement noises with given signal-to-noise ratios and arbitrary inter-scan displacements of scatterers. We illustrate several of such abilities, including comparative simulations of OCT-scans for Bessel versus Gaussian beams, presence of arbitrary aberrations at the tissue boundary and various scatterer motions. The model flexibility and computational efficiency allow one to accurately study various properties of OCT-scans for developing new methods of their processing in various biomedical applications.
Collapse
Affiliation(s)
- Alexander L. Matveyev
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod, 603950, Russia
| | - Lev A. Matveev
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod, 603950, Russia
| | - Aleksandr A. Moiseev
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod, 603950, Russia
| | - Alexander A. Sovetsky
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod, 603950, Russia
| | - Grigory V. Gelikonov
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod, 603950, Russia
| | - Vladimir Y. Zaitsev
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod, 603950, Russia
| |
Collapse
|
17
|
Real-Time Strain and Elasticity Imaging in Phase-Sensitive Optical Coherence Elastography Using a Computationally Efficient Realization of the Vector Method. PHOTONICS 2021. [DOI: 10.3390/photonics8120527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a real-time realization of OCT-based elastographic mapping local strains and distribution of the Young’s modulus in biological tissues, which is in high demand for biomedical usage. The described variant exploits the principle of Compression Optical Coherence Elastography (C-OCE) and uses processing of phase-sensitive OCT signals. The strain is estimated by finding local axial gradients of interframe phase variations. Instead of the popular least-squares method for finding these gradients, we use the vector approach, one of its advantages being increased computational efficiency. Here, we present a modified, especially fast variant of this approach. In contrast to conventional correlation-based methods and previously used phase-resolved methods, the described method does not use any search operations or local calculations over a sliding window. Rather, it obtains local strain maps (and then elasticity maps) using several transformations represented as matrix operations applied to entire complex-valued OCT scans. We first elucidate the difference of the proposed method from the previously used correlational and phase-resolved methods and then describe the proposed method realization in a medical OCT device, in which for real-time processing, a “typical” central processor (e.g., Intel Core i7-8850H) is sufficient. Representative examples of on-flight obtained elastographic images are given. These results open prospects for broad use of affordable OCT devices for high-resolution elastographic vitalization in numerous biomedical applications, including the use in clinic.
Collapse
|