1
|
Sarfaraz MZ, Abbas S, Zaman MA, Parveen A, Kousar S, Zulqarnain M. A step forward to revolutionize the eimeriosis controlling strategies in cattle by using traditional medication. Exp Parasitol 2025; 271:108926. [PMID: 40044068 DOI: 10.1016/j.exppara.2025.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/12/2025]
Abstract
More than 10 species of Eimeria is found in cattle but Eimeria zuernii is one of the most pathogenic protozoan parasites affecting the global livestock industry. At the herd level, E. zuernii can cause illness in 10-80% of animals and reduce gross margins by 8-9%, leading to estimated annual losses of $731 million. This review highlights the economic impact, prevalence, and current control methods for E. zuernii infections, as well as the challenges associated with treatment and the development of alternative control methods. In the past two decades, 22 studies have examined synthetic drugs for managing eimeriosis in cattle. Various anticoccidial drugs (AcDs; Amprolium, decoquinate, ionophores, monensin, lasalocid, toltrazuril etc) have been used, but the efficacy of these drugs is no more consistent. Because of this, E. zuernii develops resistance to some of these anticoccidials. This trend highlights the urgent need for alternative treatments. The medicinal plants being enriched with various phytochemicals like flavonoids, tannins, alkaloids, terpenes etc have been reported as potential anticoccidial, anthelmintic and antimicrobial efficacy against the different parasites including Eimeria species in chicken, pig and rabbits. However, this review suggests the research community to treat the E. zuernii with a plant based medication (oils and extracts). This review critically emphasizes the need to acknowledge the significant role of medicinal plants in controlling eimeriosis and also the large-scale trials or standardization of plant-based therapies is required. By incorporating plant-based remedies into integrated treatment strategies alongside synthetic drugs and improved sanitation practices, we can effectively minimize financial losses and safeguard livestock health.
Collapse
Affiliation(s)
| | - Sidra Abbas
- Department of Zoology, University of Jhang, Jhang, Pakistan
| | - Muhammad Arfan Zaman
- Department of Pathobiology, College of Veterinary and Animal Sciences, Sub-campus UVAS Lahore, Jhang, Pakistan.
| | - Asia Parveen
- Department of Biochemistry, Faculty of Life Sciences, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Safina Kousar
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | | |
Collapse
|
2
|
Guerrero-Becerra L, Morimoto S, Arrellano-Ordoñez E, Morales-Miranda A, Guevara-Gonzalez RG, Feregrino-Pérez AA, Lomas-Soria C. Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential. Pharmaceuticals (Basel) 2025; 18:69. [PMID: 39861134 PMCID: PMC11768933 DOI: 10.3390/ph18010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic non-communicable disease with an increasing prevalence in Latin America and worldwide, impacting various social and economic areas. It causes numerous complications for those affected. Current treatments for diabetes include oral hypoglycemic drugs, which can lead to adverse effects and health complications. Other natural alternatives for DM treatment have been studied as adjunct therapies that could reduce or eliminate the need for antidiabetic medications. Several natural supplements may offer an alternative way to improve the quality of life for patients with DM, and they may have other nutraceutical applications. Due to their phenolic compound content, some leguminous substances have been proposed as these alternatives. Phenolic compounds, with their high antioxidant activity, have shown promising potential in insulin synthesis, secretion, and the functionality of the endocrine pancreas. This review provides valuable information on various leguminous plants with anti-diabetic properties, including antioxidant, hypoglycemic, anti-fat-induced damage, and anti-apoptotic properties in vitro and in vivo, attributed to the high content of phenolic compounds in their seeds. Natural products with antidiabetic and pharmacological treatment potential improve diabetes management by offering more effective and complementary alternatives. To integrate these herbal remedies into modern medicine, further research on phenolic compound type, doses, efficacy, and safety in the human population is needed.
Collapse
Affiliation(s)
- Lucia Guerrero-Becerra
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Sumiko Morimoto
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Estefania Arrellano-Ordoñez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Angélica Morales-Miranda
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Ramón G. Guevara-Gonzalez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Ana Angélica Feregrino-Pérez
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| |
Collapse
|
3
|
Ren Z, Yin X, Liu L, Zhang L, Shen W, Fang Z, Yu Q, Qin L, Chen L, Jia R, Wang X, Liu B. Flavonoid localization in soybean seeds: Comparative analysis of wild (Glycine soja) and cultivated (Glycine max) varieties. Food Chem 2024; 456:139883. [PMID: 38870803 DOI: 10.1016/j.foodchem.2024.139883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Wild soybean (Glycine soja) is known for its high flavonoid contents, yet the distribution of flavonoids in the seeds is not well understood. Herein, we utilized matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and metabolomics methods to systematically investigate flavonoid differences in the seed coats and embryos of G. soja and G. max. The results of flavonoid profiles and total flavonoid content analyses revealed that flavonoid diversity and abundance in G. soja seed coats were significantly higher than those in G. max whereas the levels were similar in embryos. Specifically, 23 unique flavonoids were identified in the seed coats of G. soja, including procyanidins, epicatechin derivatives, and isoflavones. Using MALDI-MSI, we further delineated the distribution of the important flavonoids in the cotyledons, hypocotyls, and radicles of the two species. These findings imply that G. soja holds considerable breeding potential to enhance the nutritional and stress resistance traits of G. max.
Collapse
Affiliation(s)
- Zhentao Ren
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Xin Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Laipan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Wenjing Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Zhixiang Fang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Qi Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ruizong Jia
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in off-Season Reproduction Regions, Chinese Academy of Tropical Agricultural Sciences, Sanya 572011, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| |
Collapse
|
4
|
Lavrent'yeva SI, Ivachenko LE, Blinova AA, Bondarenko ON, Kuznetsova VA. Chemical Composition of Seeds in Soybean Glycine soja (Fabaceae) of Amur Oblast. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:194-204. [PMID: 39128955 DOI: 10.1134/s0012496624701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024]
Abstract
The wild soybean Glycine soja Sieb. et Zucc. is an ancestor of the cultivated soybean Glycine max (L.) Merr. and a source of many valuable genes missing in the G. max genome, including genes that determine stress resistance to adverse environmental factors. Biochemical parameters (protein, oil, ascorbic acid, carotene, higher fatty acids, and specific activities and multiple forms of enzymes of the oxidoreductase and hydrolase classes) were studied in five G. soja accessions from the collection of the All-Russian Institute of Soybean (КА-1413, КА-342, КBl-29, КBl-24, and Kеl-72). The accessions provide unique natural gene banks. Wild seeds were collected in three districts (Arkharinskii, Blagoveshchensk, and Belogorskii) of Amur Oblast. Based on superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO), ribonuclease (RNase), acid phosphatase, esterase, and amylase (AML) activities and biochemical parameters of seeds, the G. soja accession KA-1413 was found to have higher contents of protein, oleic acid, and linolenic acid; a lower polyphenol oxidase specific activity; and higher activities of SODs, esterases, and RNases. The accession KA-1413 was therefore recommended to use as a source of dominant genes in breeding to increase the adaptive potential of new soybean varieties. A higher heterogeneity of multiple forms was observed for SOD, AML, RNase, and esterase, which can provide markers of adaptation to environmental conditions.
Collapse
Affiliation(s)
- S I Lavrent'yeva
- All-Russian Institute of Soybean, Blagoveshchensk, Russia.
- Blagoveshchensk State Pedagogical University, Blagoveshchensk, Russia.
| | - L E Ivachenko
- All-Russian Institute of Soybean, Blagoveshchensk, Russia
- Blagoveshchensk State Pedagogical University, Blagoveshchensk, Russia
| | - A A Blinova
- All-Russian Institute of Soybean, Blagoveshchensk, Russia
| | - O N Bondarenko
- All-Russian Institute of Soybean, Blagoveshchensk, Russia
| | - V A Kuznetsova
- Vavilov All-Russian Institute of Plant Genetic Resources, Vladivostok, Russia
| |
Collapse
|
5
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Morimoto R, Isegawa Y. Anti-Influenza Virus Activity of Citrullus lanatus var. citroides as a Functional Food: A Review. Foods 2023; 12:3866. [PMID: 37893759 PMCID: PMC10606521 DOI: 10.3390/foods12203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza is an acute respiratory illness caused by the influenza virus, in response to which vaccines and antiviral drugs are administered. In recent years, the antiviral effects of plants and foods have garnered attention. This review is the first to summarize the therapeutic properties of wild watermelon (Citrullus lanatus var. citroides) against influenza from a phytochemical viewpoint. Wild watermelon is a wild plant with significant potential as a therapeutic candidate in antiviral strategies, when focused on its multiple anti-influenza functionalities. Wild watermelon juice inhibits viral growth, entry, and replication. Hence, we highlight the possibility of utilizing wild watermelon for the prevention and treatment of influenza with stronger antiviral activity. Phytochemicals and phytoestrogen (polyphenol, flavonoids, and prenylated compounds) in wild watermelon juice contribute to this activity and inhibit various stages of viral replication, depending on the molecular structure. Wild plants and foods closely related to the original species contain many natural compounds such as phytochemicals, and exhibit various viral growth inhibitory effects. These natural products provide useful information for future antiviral strategies.
Collapse
Affiliation(s)
- Ryosuke Morimoto
- Department of Health and Nutrition, Faculty of Human Life Science, Shikoku University, Tokushima 771-1192, Japan;
| | - Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
7
|
Ajayi FF, Alnuaimi A, Hamdi M, Mostafa H, Wakayama M, Mudgil P, Maqsood S. Metabolomics approach for the identification of bioactive compounds released from young and mature soybean upon in vitro gastrointestinal digestion and their effect on health-related bioactive properties. Food Chem 2023; 420:136050. [PMID: 37098305 DOI: 10.1016/j.foodchem.2023.136050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The aim of the present study was to comparatively investigate the relative phytochemical profiles (phenolic content, organic and amino acids, free sugars, and other metabolites using metabolomics approach), and bioactive potentials of young (YS) and mature soybean (MS) upon in vitro simulated gastrointestinal digestion (SGID). Cumulatively, a total of 198 metabolites were identified in MS and YS, 119 metabolites in undigested YS, and a total of 136 metabolites in undigested MS, which further increased to 156 and 152 in YS and MS upon SGID, respectively. Gastric digesta of both YS and MS exhibited higher inhibitory properties towards α-amylase and DPP-IV enzymes than their intestinal digesta. Furthermore, the intestinal digesta of MS showed higher antioxidant and anti-inflammatory activities compared to the YS intestinal digesta. Overall, the results suggested that the gastrointestinal digestion of YS and MS displayed distinctive metabolic profiles together with varied bioactive potentials.
Collapse
|
8
|
Protective Effects of Glycine soja Leaf and Stem Extract against Chondrocyte Inflammation and Osteoarthritis. Int J Mol Sci 2023; 24:ijms24054829. [PMID: 36902256 PMCID: PMC10002952 DOI: 10.3390/ijms24054829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Wild soybean, also known as Glycine soja Sieb. et Zucc. (GS), has long been known for its various health benefits. Although various pharmacological effects of G. soja have been studied, the effects of GS leaf and stem (GSLS) on osteoarthritis (OA) have not been evaluated. Here, we examined the anti-inflammatory effects of GSLS in interleukin-1β (IL-1β)-stimulated SW1353 human chondrocytes. GSLS inhibited the expression of inflammatory cytokines and matrix metalloproteinases and ameliorated the degradation of collagen type II in IL-1β-stimulated chondrocytes. Furthermore, GSLS played a protective role in chondrocytes by inhibiting the activation of NF-κB. In addition, our in vivo study demonstrated that GSLS ameliorated pain and reversed cartilage degeneration in joints by inhibiting inflammatory responses in a monosodium iodoacetate (MIA)-induced OA rat model. GSLS remarkably reduced the MIA-induced OA symptoms, such as joint pain, and decreased the serum levels of proinflammatory mediators, cytokines, and matrix metalloproteinases (MMPs). Our findings show that GSLS exerts anti-osteoarthritic effects and reduces pain and cartilage degeneration by downregulating inflammation, suggesting that it is a useful therapeutic candidate for OA.
Collapse
|
9
|
Liang R, Ji X, Sheng Z, Liu J, Qiang S, Song X. Fitness and Rhizobacteria of F2, F3 Hybrids of Herbicide-Tolerant Transgenic Soybean and Wild Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:3184. [PMID: 36432913 PMCID: PMC9693618 DOI: 10.3390/plants11223184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The introduction of herbicide-tolerant (HT) transgenic soybeans (Glycine max (L.) Merr.) into farming systems raises great concern that transgenes may flow to endemic wild soybeans (Glycine soja Sieb. et Zucc.) via pollen, which may increase the ecological risks by increasing the fitness of hybrids under certain conditions and threaten the genetic diversity of wild soybean populations. In order to demonstrate the potential risk of gene flow from the HT soybean to the wild soybean, the fitness of F2 and F3 hybrids obtained from two wild soybean populations (HLJHRB-1, JSCZ) collected from China and the HT soybean was measured under farmland and wasteland soil conditions, as well as with or without weed competition. Compared with their wild progenitors, the F2 and F3 hybrids of HLJHRB-1 displayed a higher emergence rate, higher aboveground dry biomass, more pods and filled-seed plants, as well as better composite fitness under four planting conditions. The F2 and F3 hybrids of JSCZ also displayed a higher emergence rate, higher aboveground dry biomass, more pods, and more filled seeds per plant under mixed planting, whereas these characteristics were lower under pure planting conditions in wasteland and farmland soil. Therefore, the composite fitness of JSCZ hybrids was higher or lower depending on the planting conditions. Furthermore, the soil microbial communities of the F3 of HLJHRB-1, JSCZ, and the wild soybean were investigated with 16S rDNA sequencing, which showed that low alpha diversity of rhizobacteria was relative to high fitness, and Rhizobium played an important role in promoting F3 plant growth.
Collapse
|
10
|
Pugh L, Pancholi A, Purat PC, Agudo-Alvarez S, Benito-Arenas R, Bastida A, Bolanos-Garcia VM. Computational Biology Dynamics of Mps1 Kinase Molecular Interactions with Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer. Int J Mol Sci 2022; 23:ijms232214228. [PMID: 36430712 PMCID: PMC9692432 DOI: 10.3390/ijms232214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin. Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug development in oncology.
Collapse
Affiliation(s)
- Lauren Pugh
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Alisha Pancholi
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Priscila Celeste Purat
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Sandra Agudo-Alvarez
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| |
Collapse
|
11
|
Lee YH, Lee NR, Lee CH. Comprehensive Metabolite Profiling of Four Different Beans Fermented by Aspergillus oryzae. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227917. [PMID: 36432017 PMCID: PMC9695057 DOI: 10.3390/molecules27227917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Fermented bean products are used worldwide; most of the products are made using only a few kinds of beans. However, the metabolite changes and contents in the beans generally used during fermentation are unrevealed. Therefore, we selected four different beans (soybean, Glycine max, GM; wild soybean, Glycine soja, GS; common bean, Phaseolus vulgaris, PV; and hyacinth bean, Lablab purpureus, LP) that are the most widely consumed and fermented with Aspergillus oryzae. Then, metabolome and multivariate statistical analysis were performed to figure out metabolite changes during fermentation. In the four beans, carbohydrates were decreased, but amino acids and fatty acids were increased in the four beans as they fermented. The relative amounts of amino acids were relatively abundant in fermented PV and LP as compared to other beans. In contrast, isoflavone aglycones (e.g., daidzein, glycitein, and genistein) and DDMP-conjugated soyasaponins (e.g., soyasaponins βa and γg) were increased in GM and GS during fermentation. Notably, these metabolite changes were more significant in GS than GM. In addition, the increase of antioxidant activity in fermented GS was significant compared to other beans. We expect our research provides a basis to extend choice for bean fermentation for consumers and food producers.
Collapse
Affiliation(s)
- Yeon Hee Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Rae Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (N.-R.L.); (C.H.L.); Tel.: +82-2-2049-6177 (C.H.L.)
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (N.-R.L.); (C.H.L.); Tel.: +82-2-2049-6177 (C.H.L.)
| |
Collapse
|
12
|
Kebal L, Pokajewicz K, Djebli N, Mostefa N, Poliwoda A, Wieczorek PP. HPLC-DAD profile of phenolic compounds and In vitro antioxidant activity of Ficus carica L. fruits from two Algerian varieties. Biomed Pharmacother 2022; 155:113738. [DOI: 10.1016/j.biopha.2022.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
|
13
|
You Z, Li Y, Zhang K, Zheng X, Wong VKW, Liu W. Inhibitory effect of plant essential oils on α-glucosidase. Food Sci Biotechnol 2022; 31:1593-1602. [PMID: 36278134 PMCID: PMC9582169 DOI: 10.1007/s10068-022-01145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
Diabetes mellitus, associated with α-glucosidase, has been considered as a chronic metabolic disorder, seriously affecting human health. Thus, searching natural α-glucosidase inhibitors and investigating their inhibition mechanism are urgently important. In this study, sixty-two essential oils (EOs), derived from aromatic plants, were found to exert different inhibition on α-glucosidase. The further study revealed that the most potent EOs against α-glucosidase were chuan-xiong, fructus cnidii, sacha inchi, aloe, ganoderma lucidum spore and ginger with IC50 values of 3.02, 2.88, 7.37, 5.06, 5.32 and 7.40 μg/mL. Moreover, the inhibitory mechanism and kinetics studies found that chuan-xiong and sacha inchi were reversible and mixed-type inhibitors. Fructus cnidii, aloe, ganoderma lucidum spore and ginger were reversible and uncompetitive-type inhibitors. It is suggested that EOs, being of natural origin, would be promising anti-α-glucosidase agents.
Collapse
Affiliation(s)
- Zonglin You
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China
| | - Yonglian Li
- School of Eco-Environment Technology, Guangdong Industry Polytechnic, Guangzhou, 510300 China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China
| |
Collapse
|
14
|
Assessing the Quality of Burkina Faso Soybeans Based on Fatty Acid Composition and Pesticide Residue Contamination. Molecules 2022; 27:molecules27196260. [PMID: 36234797 PMCID: PMC9571879 DOI: 10.3390/molecules27196260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Soybean is widely used in the food industry because of its high fatty acid and protein content. However, the increased use of pesticides to control pests during cultivation, in addition to being a public health concern, may influence the nutritional quality of soybeans. This study aimed to assess the nutritional quality of soybeans with respect to fatty acid profile and pesticide residue contamination. The levels of fatty acids and pesticides in soybean varieties G196 and G197 were determined by gas chromatography and by the QuEChERS method, respectively. The results showed a significant variation in the quantitative and qualitative fatty acid composition of the two varieties, with 18.03 g/100 g and 4 fatty acids detected for the G196 variety and 21.35 g/100 g and 7 fatty acids for the G197 variety, respectively. In addition, 12 active pesticide compounds were found, and among them, imazalil, quintozene, cyfluthrin and lindane exceeded their maximum limits. The G197 variety had a better nutritional profile compared to G196. The profile of fatty acids and the content of pesticide residues were used as important determinants for soybean utilization in human nutrition.
Collapse
|
15
|
Resende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, Almeida IF. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals (Basel) 2022; 15:ph15030372. [PMID: 35337168 PMCID: PMC8949675 DOI: 10.3390/ph15030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
The photoprotective skincare segment is in high demand to meet consumer concerns on UV-induced skin damage, with a recent trend towards sunscreen alternatives with a natural origin. In this study, the use of natural ingredients, either from terrestrial or marine origin, in a panel of 444 sunscreen commercial formulations (2021) was analyzed. Ingredients from terrestrial organisms represent the large majority found in the analyzed sunscreen formulations (48%), whereas marine ingredients are present only in 13% of the analyzed products. A deeper analysis regarding the most prevalent families of ingredients from terrestrial and marine organisms used as top ingredients is also presented, as well as their mechanisms of action. This study provides an up-to-date overview of the sunscreen market regarding the use of natural ingredients, which is of relevance for scientists involved in the development of new sunscreens to identify opportunities for innovation.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - José M. Sousa Lobo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Honorina Cidade
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| |
Collapse
|
16
|
Jung JW, Park SY, Oh SD, Jang Y, Suh SJ, Park SK, Ha SH, Park SU, Kim JK. Metabolomic Variability of Different Soybean Genotypes: β-Carotene-Enhanced ( Glycine max), Wild ( Glycine soja), and Hybrid ( Glycine max × Glycine soja) Soybeans. Foods 2021; 10:foods10102421. [PMID: 34681471 PMCID: PMC8535314 DOI: 10.3390/foods10102421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/27/2022] Open
Abstract
We obtained a new hybrid soybean (Hybrid) by hybridizing β-carotene-enhanced soybean (BCE; Glycine max L.) containing the phytoene synthase-2A-carotene desaturase gene and wild-type soybean (Wild; Glycine soja). To investigate metabolic changes between variants, we performed metabolic profiling of leaves (three growth stages) and seeds. Multivariate analyses revealed significant metabolic differences between genotypes in seeds and leaves, with seeds showing accumulation of phytosterols, tocopherols, and carotenoids (BCE only), indicating co-induction of the methylerythritol 4-phosphate and mevalonic acid pathways. Additionally, Hybrid produced intermediate levels of carotenoids and high levels of amino acids. Principal component analysis revealed metabolic discrimination between growth stages of soybean leaves and identified differences in leaf groups according to different genotypes at 8, 12, and 16 weeks, with Wild showing higher levels of environmental stress-related compounds relative to BCE and Hybrid leaves. The metabolic profiling approach could be a useful tool to identify metabolic links in various soybean cultivars.
Collapse
Affiliation(s)
- Jung-Won Jung
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea;
| | - Soo-Yun Park
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju-si 55365, Korea; (S.-Y.P.); (S.-D.O.); (Y.J.)
| | - Sung-Dug Oh
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju-si 55365, Korea; (S.-Y.P.); (S.-D.O.); (Y.J.)
| | - Yejin Jang
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju-si 55365, Korea; (S.-Y.P.); (S.-D.O.); (Y.J.)
| | - Sang-Jae Suh
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-J.S.); (S.-K.P.)
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-J.S.); (S.-K.P.)
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Sang-Un Park
- Department of Crop Science and Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: (S.-U.P.); (J.-K.K.); Tel.: +82-42-821-5730 (S.-U.P.); +82-32-835-8241 (J.-K.K.)
| | - Jae-Kwang Kim
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea;
- Correspondence: (S.-U.P.); (J.-K.K.); Tel.: +82-42-821-5730 (S.-U.P.); +82-32-835-8241 (J.-K.K.)
| |
Collapse
|