1
|
Sah MK, Thakuri BS, Pant J, Gardas RL, Bhattarai A. The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy. SUSTAINABLE CHEMISTRY 2024; 5:40-59. [DOI: 10.3390/suschem5020004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The current economic development paradigm, which is based on steadily rising resource consumption and pollution emissions, is no longer viable in a world with limited resources and ecological capacity. The “green economy” idea has presented this context with a chance to alter how society handles the interplay between the environmental and economic spheres. The related concept of “green nanotechnology” aims to use nano-innovations within the fields of materials science and engineering to generate products and processes that are economically and ecologically sustainable, enabling society to establish and preserve a green economy. Many different economic sectors are anticipated to be impacted by these applications, including those related to corrosion inhibitor nanofertilizers, nanoremediation, biodegradation, heavy metal detection, biofuel, insecticides and pesticides, and catalytic CO2 reduction. These innovations might make it possible to use non-traditional water sources safely and to create construction materials that are enabled by nanotechnology, improving living and ecological conditions. Therefore, our aim is to highlight how nanotechnology is being used in the green economy and to present promises for nano-applications in this domain. In the end, it emphasizes how critical it is to attain a truly sustainable advancement in nanotechnology.
Collapse
Affiliation(s)
- Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Biraj Shah Thakuri
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Jyoti Pant
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44613, Nepal
| | - Ramesh L. Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Janni M, Maestri E, Gullì M, Marmiroli M, Marmiroli N. Plant responses to climate change, how global warming may impact on food security: a critical review. FRONTIERS IN PLANT SCIENCE 2024; 14:1297569. [PMID: 38250438 PMCID: PMC10796516 DOI: 10.3389/fpls.2023.1297569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Global agricultural production must double by 2050 to meet the demands of an increasing world human population but this challenge is further exacerbated by climate change. Environmental stress, heat, and drought are key drivers in food security and strongly impacts on crop productivity. Moreover, global warming is threatening the survival of many species including those which we rely on for food production, forcing migration of cultivation areas with further impoverishing of the environment and of the genetic variability of crop species with fall out effects on food security. This review considers the relationship of climatic changes and their bearing on sustainability of natural and agricultural ecosystems, as well as the role of omics-technologies, genomics, proteomics, metabolomics, phenomics and ionomics. The use of resource saving technologies such as precision agriculture and new fertilization technologies are discussed with a focus on their use in breeding plants with higher tolerance and adaptability and as mitigation tools for global warming and climate changes. Nevertheless, plants are exposed to multiple stresses. This study lays the basis for the proposition of a novel research paradigm which is referred to a holistic approach and that went beyond the exclusive concept of crop yield, but that included sustainability, socio-economic impacts of production, commercialization, and agroecosystem management.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA) Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
3
|
Eevera T, Kumaran S, Djanaguiraman M, Thirumaran T, Le QH, Pugazhendhi A. Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. ENVIRONMENTAL RESEARCH 2023; 236:116849. [PMID: 37558116 DOI: 10.1016/j.envres.2023.116849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.
Collapse
Affiliation(s)
- Tamilmani Eevera
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Shanmugam Kumaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur, 613 403, Tamil Nadu, India
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Thanabalu Thirumaran
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
4
|
Ansari MA. Nanotechnology in Food and Plant Science: Challenges and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2565. [PMID: 37447126 DOI: 10.3390/plants12132565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Globally, food safety and security are receiving a lot of attention to ensure a steady supply of nutrient-rich and safe food. Nanotechnology is used in a wide range of technical processes, including the development of new materials and the enhancement of food safety and security. Nanomaterials are used to improve the protective effects of food and help detect microbial contamination, hazardous chemicals, and pesticides. Nanosensors are used to detect pathogens and allergens in food. Food processing is enhanced further by nanocapsulation, which allows for the delivery of bioactive compounds, increases food bioavailability, and extends food shelf life. Various forms of nanomaterials have been developed to improve food safety and enhance agricultural productivity, including nanometals, nanorods, nanofilms, nanotubes, nanofibers, nanolayers, and nanosheets. Such materials are used for developing nanofertilizers, nanopesticides, and nanomaterials to induce plant growth, genome modification, and transgene expression in plants. Nanomaterials have antimicrobial properties, promote plants' innate immunity, and act as delivery agents for active ingredients. Nanocomposites offer good acid-resistance capabilities, effective recyclability, significant thermostability, and enhanced storage stability. Nanomaterials have been extensively used for the targeted delivery and release of genes and proteins into plant cells. In this review article, we discuss the role of nanotechnology in food safety and security. Furthermore, we include a partial literature survey on the use of nanotechnology in food packaging, food safety, food preservation using smart nanocarriers, the detection of food-borne pathogens and allergens using nanosensors, and crop growth and yield improvement; however, extensive research on nanotechnology is warranted.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
5
|
Helal MID, El-Mogy MM, Khater HA, Fathy MA, Ibrahim FE, Li YC, Tong Z, Abdelgawad KF. A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption. PLANTS (BASEL, SWITZERLAND) 2023; 12:1978. [PMID: 37653895 PMCID: PMC10223464 DOI: 10.3390/plants12101978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 07/12/2023]
Abstract
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist.In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47-88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.
Collapse
Affiliation(s)
- Mohamed I. D. Helal
- Soil Sciences Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Hassan A. Khater
- Soil Sciences Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Muhammad A. Fathy
- Soil Sciences Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Fatma E. Ibrahim
- Soil Sciences Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yuncong C. Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, Institute of Food and Agricultural Science (IFAS), University of Florida, Homestead, FL 33031, USA
| | - Zhaohui Tong
- School of Chemistry and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Karima F. Abdelgawad
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
6
|
Majee S, Sarkar KK, Sarkhel R, Halder G, Mandal DD, Rathinam NK, Mandal T. Bio-organic fertilizer production from industrial waste and insightful analysis on release kinetics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116378. [PMID: 36270128 DOI: 10.1016/j.jenvman.2022.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The present study has been designed to utilize industrial and agricultural solid waste for NPK (Nitrogen-Phosphorus-Potassium) bio-organic fertilizer production and its optimized use. The collagenic material of wet blue leather (WBL) from leather industry was used as nitrogen source, after H3PO4 acid-mediated chromium removal. Chicken meat-bone meal (CMBM) and rice husk ash (RHA) are abundantly available locally, had used as P, K, and Ca sources. The presence of N, P, K, Ca in the produced bio-organic NPK fertilizer were 10.76, 11.03, 3.41, 13.64, respectively as per mixing ratio of ingredients. In this study it was effect on the chili plant (Capsicum annuum L.) growth and revealed 1.15 and 1.03 fold higher plant growth, 1.40 and 1.18 fold higher total chlorophyll content than untreated soil (control), and chemical fertilizer. The liberation of fertilizers components from their source, transport of fertilizer components in the soil, and absorption in plant roots have been studied using mathematical models indicating the optimum fertilizer use for better productivity and to reduce loss of extra fertilizer and eutrophication. The formulation showed excellent water retention capability (3.2 L/kg), which might increase soil water availability to the plants and eventually reduce water demand and labour cost. DNA intercalation study proved there is no harm to use this fertilizer.
Collapse
Affiliation(s)
- Subhasish Majee
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Kalyan Kumar Sarkar
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Rwiddhi Sarkhel
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Gopinath Halder
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | | | - Navanietha Krishnaraj Rathinam
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Tamal Mandal
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, India.
| |
Collapse
|
7
|
Mohamed AA, Sameeh MY, El-Beltagi HS. Preparation of Seaweed Nanopowder Particles Using Planetary Ball Milling and Their Effects on Some Secondary Metabolites in Date Palm ( Phoenix dactylifera L.) Seedlings. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010039. [PMID: 36675989 PMCID: PMC9866922 DOI: 10.3390/life13010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Due to their distinctive physicochemical characteristics, nanoparticles have recently emerged as pioneering materials in agricultural research. In this work, nanopowders (NP) of seaweed (Turbinaria triquetra) were prepared using the planetary ball milling procedure. The prepared nanopowders from marine seaweed were characterized by particle size, zeta potential, UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). When the seaweed nanopowder of Turbinaria triquetra was subjected to FT-IR analysis, it revealed the presence of different functional groups, including alkane, carboxylic acids, alcohol, alkenes and aromatics. Moreover, the methanol extract was used to identify the polyphenolic components in seaweed (NP) using high performance liquid chromatography (HPLC) and the extract revealed the presence of a number of important compounds such as daidzein and quercetin. Moreover, the pot experiment was carried out in order to evaluate the effects of prepared seaweed (NP) as an enhancer for the growth of date palm (Phoenix dactylifera L.). The date palm seedlings received four NP doses, bi-distilled water was applied as the control and doses of 25, 50 or 100 mg L-1 of seaweed liquid NP were used (referred to as T1, T2, T3 and T4, respectively). Foliar application of liquid NP was applied two times per week within a period of 30 days. Leaf area, number of branches, dry weight, chlorophylls, total soluble sugars and some other secondary metabolites were determined. Our results indicated that the foliar application of liquid NP at T3 enhanced the growth parameters of the date palm seedlings. Additionally, liquid NP at T3 and T4 significantly increased the photosynthetic pigments. The total phenolic, flavonoid and antioxidant activities were stimulated by NP foliar application. Moreover, the data showed that the T3 and T4 doses enhanced the activity of the antioxidant enzymes (CAT, POX or PPO) compared to other treatments. Therefore, the preparation of seaweed NP using the planetary ball milling method could produce an eco-friendly and cost- effective material for sustainable agriculture and could be an interesting way to create a nanofertilizer that mitigates plant growth.
Collapse
Affiliation(s)
- Amal A. Mohamed
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah P.O. Box 21955, Saudi Arabia
- Plant Biochemistry Department, National Research Centre, 33 El-Behooth St., Dokki, Giza P.O. Box 12622, Egypt
- Correspondence: (A.A.M.); (H.S.E.-B.)
| | - Manal Y. Sameeh
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah P.O. Box 21955, Saudi Arabia
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa P.O. Box 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza P.O. Box 12613, Egypt
- Correspondence: (A.A.M.); (H.S.E.-B.)
| |
Collapse
|
8
|
Attaran Dowom S, Karimian Z, Mostafaei Dehnavi M, Samiei L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC PLANT BIOLOGY 2022; 22:364. [PMID: 35869431 PMCID: PMC9308334 DOI: 10.1186/s12870-022-03689-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/10/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The use of organic nanoparticles to improve drought resistance and water demand characteristics in plants seems to be a promising eco-friendly strategy for water resource management in arid and semi-arid areas. This study aimed to investigate the effect of chitosan nanoparticles (CNPs) (0, 30, 60 and 90 ppm) on some physiological, biochemical, and anatomical responses of Salvia abrotanoides under multiple irrigation regimes (30% (severe), 50% (medium) and 100% (control) field capacity). RESULTS The results showed that drought stress decreases almost all biochemical parameters. However, foliar application of CNPs mitigated the effects caused by drought stress. This elicitor decreased electrolyte conductivity (35%), but improved relative water content (12.65%), total chlorophyll (63%), carotenoids (68%), phenol (23.1%), flavonoid (36.4%), soluble sugar (58%), proline (49%), protein (45.2%) in S. abrotanoides plants compared to the control (CNPs = 0). Furthermore, the activity of antioxidant enzymes superoxide dismutase (86%), polyphenol oxidase (72.8%), and guaiacol peroxidase (75.7%) were enhanced after CNPs treatment to reduce the effects of water deficit. Also, the CNPs led to an increase in stomatal density (5.2 and 6.6%) while decreasing stomatal aperture size (50 and 25%) and semi-closed stomata (26 and 53%) in leaves. CONCLUSION The findings show that CNPs not only can considerably reduce water requirement of S. abrotanoides but also are able to enhance the drought tolerance ability of this plant particularly in drought-prone areas.
Collapse
Affiliation(s)
- Samaneh Attaran Dowom
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Karimian
- Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Leila Samiei
- Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|