1
|
Sackey OK, Feng N, Mohammed YZ, Dzou CF, Zheng D, Zhao L, Shen X. A comprehensive review on rice responses and tolerance to salt stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1561280. [PMID: 40230606 PMCID: PMC11994683 DOI: 10.3389/fpls.2025.1561280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
The challenge of salinity stress significantly impacts global rice production, especially in coastal and arid regions where the salinization of agricultural soils is on the rise. This review explores the complex physiological, biochemical, and genetic mechanisms contributing to salinity tolerance in rice (Oryza sativa L.) while examining agronomic and multidisciplinary strategies to bolster resilience. Essential adaptations encompass the regulation of ionic balance, the management of antioxidants, and the adjustments to osmotic pressure, all driven by genes such as OsHKT1;5 and transcription factors like OsbZIP73. The evolution of breeding strategies, encompassing traditional methods and cutting-edge innovations, has produced remarkable salt-tolerant varieties such as FL478 and BRRI dhan47. The advancements in this field are enhanced by agronomic innovations, including integrated soil management, crop rotation, and chemical treatments like spermidine, which bolster stress tolerance through antioxidant activity and transcriptional regulation mechanisms. Case studies from South Asia, Sub-Saharan Africa, the Middle East and, Australia demonstrate the transformative potential of utilizing salt-tolerant rice varieties; however, challenges persist, such as the polygenic nature of salinity tolerance, environmental variability, and socioeconomic barriers. The review highlights the importance of collaborative efforts across various disciplines, merging genomic technologies, sophisticated phenotyping, and inclusive breeding practices to foster climate-resilient and sustainable rice cultivation. This work seeks to navigate the complexities of salinity stress and its implications for global food security, employing inventive and cohesive strategies to confront the challenges posed by climate change.
Collapse
Affiliation(s)
- Obed Kweku Sackey
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- National Saline-Tolerant Rice Technology Innovation South China Center, South China, Zhanjiang, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- National Saline-Tolerant Rice Technology Innovation South China Center, South China, Zhanjiang, China
| | | | | | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- National Saline-Tolerant Rice Technology Innovation South China Center, South China, Zhanjiang, China
| | - Liming Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- National Saline-Tolerant Rice Technology Innovation South China Center, South China, Zhanjiang, China
| | - Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- National Saline-Tolerant Rice Technology Innovation South China Center, South China, Zhanjiang, China
| |
Collapse
|
2
|
Wang D, Xu M, Xu TY, Lin XY, Musazade E, Lu JM, Yue WJ, Guo LQ, Zhang Y. Specific physiological responses to alkaline carbonate stress in rice ( Oryza sativa) seedlings: organic acid metabolism and hormone signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23161. [PMID: 39298656 DOI: 10.1071/fp23161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
In recent years, alkaline soda soil has stimulated numerous biological research on plants under carbonate stress. Here, we explored the difference in physiological regulation of rice seedlings between saline (NaCl) and alkaline carbonate (NaHCO3 and Na2 CO3 ) stress. The rice seedlings were treated with 40mM NaCl, 40mM NaHCO3 and 20mM Na2 CO3 for 2h, 12h, 24h and 36h, their physiological characteristics were determined, and organic acid biosynthesis and metabolism and hormone signalling were identified by transcriptome analysis. The results showed that alkaline stress caused greater damage to their photosynthetic and antioxidant systems and led to greater accumulation of organic acid, membrane damage, proline and soluble sugar but a decreased jasmonic acid content compared with NaCl stress. Jasmonate ZIM-Domain (JAZ), the probable indole-3-acetic acid-amido synthetase GH3s, and the protein phosphatase type 2Cs that related to the hormone signalling pathway especially changed under Na2 CO3 stress. Further, the organic acid biosynthesis and metabolism process in rice seedlings were modified by both Na2 CO3 and NaHCO3 stresses through the glycolate/glyoxylate and pyruvate metabolism pathways. Collectively, this study provides valuable evidence on carbonate-responsive genes and insights into the different molecular mechanisms of saline and alkaline stresses.
Collapse
Affiliation(s)
- Dan Wang
- School of Public Health, Jilin Medical University, Jilin 132013, PR China; and College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Miao Xu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Teng-Yuan Xu
- School of Public Health, Jilin Medical University, Jilin 132013, PR China
| | - Xiu-Yun Lin
- Jilin Academy of Agricultural Sciences, Changchun 130118, PR China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Jing-Mei Lu
- School of Life Sciences, Jilin University, Changchun 130062, PR China
| | - Wei-Jie Yue
- School of Public Health, Jilin Medical University, Jilin 132013, PR China
| | - Li-Quan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130061, PR China
| |
Collapse
|
3
|
Duan X, Xu Y, Liu Y, Xu X, Wen L, Fang J, Yu Y. Iron transporter1 OsIRT1 positively regulates saline-alkaline stress tolerance in Oryza sativa. JOURNAL OF PLANT PHYSIOLOGY 2024; 299:154272. [PMID: 38772322 DOI: 10.1016/j.jplph.2024.154272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Soil salinization-alkalization severely affects plant growth and crop yield worldwide, especially in the Songnen Plain of Northeast China. Saline-alkaline stress increases the pH around the plant roots, thereby limiting the absorption and transportation of nutrients and ions, such as iron (Fe). Fe is an essential micronutrient that plays important roles in many metabolic processes during plant growth and development, and it is acquired by the root cells via iron-regulated transporter1 (IRT1). However, the function of Oryza sativa IRT1 (OsIRT1) under soda saline-alkaline stress remains unknown. Therefore, in this study, we generated OsIRT1 mutant lines and OsIRT1-overexpressing lines in the background of the O. sativa Songjing2 cultivar to investigate the roles of OsIRT1 under soda saline-alkaline stress. The OsIRT1-overexpressing lines exhibited higher tolerance to saline-alkaline stress compared to the mutant lines during germination and seedling stages. Moreover, the expression of some saline-alkaline stress-related genes and Fe uptake and transport-related genes were altered. Furthermore, Fe and Zn contents were upregulated in the OsIRT1-overexpressing lines under saline-alkaline stress. Further analysis revealed that Fe and Zn supplementation increased the tolerance of O. sativa seedlings to saline-alkaline stress. Altogether, our results indicate that OsIRT1 plays a significant role in O. sativa by repairing the saline-alkaline stress-induced damage. Our findings provide novel insights into the role of OsIRT1 in O. sativa under soda saline-alkaline stress and suggest that OsIRT1 can serve as a potential target gene for the development of saline-alkaline stress-tolerant O. sativa plants.
Collapse
Affiliation(s)
- Xiangbo Duan
- College of Life Science and Engineering, Shenyang University, Shenyang, 110044, China
| | - Yanang Xu
- College of Life Science and Engineering, Shenyang University, Shenyang, 110044, China
| | - Yimei Liu
- Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xingjian Xu
- Institute of Agricultural and Animal Husbandry of Hinggan League, Inner Mongolia Key Laboratory of Rice Breeding Innovation in Northern Cold Regions, Ulanhot, 137400, China
| | - Li Wen
- Institute of Agricultural and Animal Husbandry of Hinggan League, Inner Mongolia Key Laboratory of Rice Breeding Innovation in Northern Cold Regions, Ulanhot, 137400, China
| | - Jun Fang
- Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, 150081, China; Northern Rice Research Center of Bao Qing, Shuangyashan, 155600, China.
| | - Yang Yu
- College of Life Science and Engineering, Shenyang University, Shenyang, 110044, China.
| |
Collapse
|
4
|
Nampei M, Ogi H, Sreewongchai T, Nishida S, Ueda A. Potassium transporter OsHAK17 may contribute to saline-alkaline tolerant mechanisms in rice (Oryza sativa). JOURNAL OF PLANT RESEARCH 2024; 137:505-520. [PMID: 38427146 PMCID: PMC11082038 DOI: 10.1007/s10265-024-01529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Rice production is seriously affected by saline-alkaline stress worldwide. To elucidate the saline-alkaline tolerance mechanisms in a novel tolerant rice variety, Shwe Nang Gyi (SNG), we investigated ion accumulation in SNG and Koshihikari (KSH), which is a saline-alkaline sensitive rice variety, and the candidates for saline-alkaline inducible genes in SNG using RNA-seq. SNG had superior ion accumulation capacity, such as K and Zn, compared to KSH. In contrast, SNG accumulated the same level of Na content in its leaf blades as KSH despite the higher dry weight of the SNG leaf blades. We further found that the expression of numerous genes, including several K+ transporter/high-affinity K+ transporter/K+ uptake protein/K+ transporter (HAK/KUP/KT) family members, were upregulated in SNG, and that OsHAK17 and OsHAK21 expression levels in the roots were significantly higher in SNG than in KSH. Moreover, yeast complementation analysis revealed that OsHAK17 was involved in K+ uptake under high-Na conditions. These results suggested that SNG has an effective K+ acquisition system supported by OsHAK17 functioning in saline-alkaline environments.
Collapse
Affiliation(s)
- Mami Nampei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8528, Japan
| | - Hiromu Ogi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8528, Japan
| | - Tanee Sreewongchai
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, 10900, Bangkok, Thailand
| | - Sho Nishida
- Faculty of Agriculture, Saga University, 1Honjo-Machi, Saga City, Saga, 840-8502, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima City, Kagoshima, 890-0065, Japan
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8528, Japan.
| |
Collapse
|
5
|
Wang J, Ao M, Ma A, Yu J, Guo P, Huang S, Peng X, Yun DJ, Xu ZY. A Mitochondrial Localized Chaperone Regulator OsBAG6 Functions in Saline-Alkaline Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:10. [PMID: 38252225 PMCID: PMC10803725 DOI: 10.1186/s12284-024-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family genes play prominent roles in regulating plant growth, development, and stress response. Although the molecular mechanism underlying BAG's response to abiotic stress has been studied in Arabidopsis, the function of OsBAG underlying saline-alkaline stress tolerance in rice remains unclear. In this study, OsBAG6, a chaperone regulator localized to mitochondria, was identified as a novel negative regulator of saline-alkaline stress tolerance in rice. The expression level of OsBAG6 was induced by high concentration of salt, high pH, heat and abscisic acid treatments. Overexpression of OsBAG6 in rice resulted in significantly reduced plant heights, grain size, grain weight, as well as higher sensitivity to saline-alkaline stress. By contrast, the osbag6 loss-of-function mutants exhibited decreased sensitivity to saline-alkaline stress. The transcriptomic analysis uncovered differentially expressed genes related to the function of "response to oxidative stress", "defense response", and "secondary metabolite biosynthetic process" in the shoots and roots of OsBAG6-overexpressing transgenic lines. Furthermore, cytoplasmic levels of Ca2+ increase rapidly in plants exposed to saline-alkaline stress. OsBAG6 bound to calcium sensor OsCaM1-1 under normal conditions, which was identified by comparative interactomics, but not in the presence of elevated Ca2+. Released OsCaM1-1 saturated with Ca2+ is then able to regulate downstream stress-responsive genes as part of the response to saline-alkaline stress. OsBAG6 also interacted with energy biosynthesis and metabolic pathway proteins that are involved in plant growth and saline-alkaline stress response mechanisms. This study reveals a novel function for mitochondrial localized OsBAG6 proteins in the saline-alkaline stress response alongside OsCaM1-1.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
6
|
Chen Q, Cao X, Li Y, Sun Q, Dai L, Li J, Guo Z, Zhang L, Ci L. Functional carbon nanodots improve soil quality and tomato tolerance in saline-alkali soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154817. [PMID: 35341861 DOI: 10.1016/j.scitotenv.2022.154817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
High salinity and alkalinity of saline-alkali soil lead to soil deterioration, the subsequent osmotic stress and ion toxicity inhibited crops growth and productivity. In this research, 8 mg kg-1 and 16 mg kg-1 functional carbon nanodots (FCNs) can alleviate the adverse effects of saline-alkali on tomato plant at both seedling and harvest stages, thanks to their up-regulation effects on soil properties and plant physiological processes. On one hand, FCNs stimulate the plant potential of tolerance to saline-alkali and disease resistance through triggering the defense response of antioxidant system, enhancing the osmotic adjustment, promoting the nutrient uptake, transportation and utilization, and up-regulating the photosynthesis, thereby improve tomato growth and productivity in saline-alkali soils. On the other hand, FCNs application contributes to the improvement of soil physicochemical properties and fertilities, as well as decline soil salinity and alkalinity, which are related to plant growth and fruit quality. This research also focuses on the dose-dependent effects of FCNs on their regulation effects and toxicity to tomato growth under stress or non-stress. These findings recommend that FCNs could be applied as potential amendments to ameliorate the saline-alkali soil and improve the tomato tolerance and productivity in the Yellow River Delta.
Collapse
Affiliation(s)
- Qiong Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Yuanyuan Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Qing Sun
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Linna Dai
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Jianwei Li
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Zhijiang Guo
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Lin Zhang
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China.
| |
Collapse
|