1
|
Kudoyarova G. Cellular and Molecular Regulatory Signals in Root Growth and Development. Int J Mol Sci 2025; 26:3426. [PMID: 40244272 PMCID: PMC11989353 DOI: 10.3390/ijms26073426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
The responses of root growth and development to environmental changes ensure that plants adequately adapt to the availability of water and nutrients [...].
Collapse
Affiliation(s)
- Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Pr. Octyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
2
|
Ghasemi-Soloklui AA, Kordrostami M, Jafari M. Determination of optimal gamma radiation dose for mutation breeding in 'Sabz' fig (Ficus carica L.) cuttings based on radiosensitivity and phenotypic changes. PLoS One 2025; 20:e0313017. [PMID: 39813234 PMCID: PMC11734895 DOI: 10.1371/journal.pone.0313017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
The dried fig cv. Sabz of Iran, distinguishes out among the several fig cultivars for its unique characteristics and excellent properties. The aims to this study were 1) Carefully monitoring the resulting phenotypic changes in growth patterns, leaf morphology, shoot traits, root characteristics, and other relevant traits after irradiated with different gamma rays; 2) Investigating the LD25, 50, 75 and GR25, 50, 75 values at different gamma radiation doses for chose optimum dose. According to our results, the LD50 was 70 Gy, while the LD25 and LD75 were approximately 48 and 95 Gy, respectively. Data analysis revealed that higher doses, ranging from 50 to 90 Gy, led to a reduction in leaf area for fig hardwood cuttings compared to those exposed to lower doses of gamma irradiation (10, 20, 30, and 40 Gy). In fig cuttings, the plant height gradually decreased in line with increasing irradiation doses up to 60 Gy. Among the root traits, root number was particularly influenced by higher radiation doses. On other hand, when fig cuttings were exposed to a 40 Gy radiation dosage, the average root count dropped by 50%. However, when fig cuttings were subjected to a 90 Gy radiation dose, the average root count surged by 90.7% in comparison to the control treatment. Additionally, the GR50 values were 63 Gy for internode length, 67 Gy for leaf area and 56 Gy for plant height and aerial biomass. However, the GR50 values for root number, root volume, and root biomass were 46 Gy, 57 Gy, and 51 Gy, respectively. An analysis based on the GR25, GR50, and GR75 values indicated that plant height, aerial biomass and root biomass exhibited greater sensitivity to radioactivity in comparison to other plant portions of the fig. According to the biological responses in the 'Sabz' fig, 60 Gy of gamma radiation is a suitable dose for initial mutagenesis studies.
Collapse
Affiliation(s)
- Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Moslem Jafari
- Fig Research Station, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Estahban, Iran
| |
Collapse
|
3
|
Mora-Poblete F, Campostrini E. Plants for Extreme and Changing Environments: Domestication, Evolution, Crop Breeding and Genetics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2975. [PMID: 39519894 PMCID: PMC11548160 DOI: 10.3390/plants13212975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
In this Special Issue, researchers investigated the genetic, physiological, and biological mechanisms that enable plants to thrive in challenging environmental conditions [...].
Collapse
Affiliation(s)
- Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile
| | - Eliemar Campostrini
- Ecophysiology of Tropical and Subtropical Crops, Northern Rio de Janeiro State University, Campos dos Goytacazes 28013-602, RJ, Brazil;
| |
Collapse
|
4
|
Kiryushkin AS, Ilina EL, Kiikova TY, Pawlowski K, Demchenko KN. Do DEEPER ROOTING 1 Homologs Regulate the Lateral Root Slope Angle in Cucumber ( Cucumis sativus)? Int J Mol Sci 2024; 25:1975. [PMID: 38396652 PMCID: PMC10888659 DOI: 10.3390/ijms25041975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The architecture of the root system is fundamental to plant productivity. The rate of root growth, the density of lateral roots, and the spatial structure of lateral and adventitious roots determine the developmental plasticity of the root system in response to changes in environmental conditions. One of the genes involved in the regulation of the slope angle of lateral roots is DEEPER ROOTING 1 (DRO1). Its orthologs and paralogs have been identified in rice, Arabidopsis, and several other species. However, nothing is known about the formation of the slope angle of lateral roots in species with the initiation of lateral root primordia within the parental root meristem. To address this knowledge gap, we identified orthologs and paralogs of the DRO1 gene in cucumber (Cucumis sativus) using a phylogenetic analysis of IGT protein family members. Differences in the transcriptional response of CsDRO1, CsDRO1-LIKE1 (CsDRO1L1), and CsDRO1-LIKE2 (CsDRO1L2) to exogenous auxin were analyzed. The results showed that only CsDRO1L1 is auxin-responsive. An analysis of promoter-reporter fusions demonstrated that the CsDRO1, CsDRO1L1, and CsDRO1L2 genes were expressed in the meristem in cell files of the central cylinder, endodermis, and cortex; the three genes displayed different expression patterns in cucumber roots with only partial overlap. A knockout of individual CsDRO1, CsDRO1L1, and CsDRO1L2 genes was performed via CRISPR/Cas9 gene editing. Our study suggests that the knockout of individual genes does not affect the slope angle formation during lateral root primordia development in the cucumber parental root.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| | - Tatyana Y. Kiikova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia; (A.S.K.); (E.L.I.)
| |
Collapse
|
5
|
Gogoleva N, Chervyatsova O, Balkin A, Kuzmina L, Shagimardanova E, Kiseleva D, Gogolev Y. Microbial tapestry of the Shulgan-Tash cave (Southern Ural, Russia): influences of environmental factors on the taxonomic composition of the cave biofilms. ENVIRONMENTAL MICROBIOME 2023; 18:82. [PMID: 37990336 PMCID: PMC10662634 DOI: 10.1186/s40793-023-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Cave biotopes are characterized by stable low temperatures, high humidity, and scarcity of organic substrates. Despite the harsh oligotrophic conditions, they are often inhabited by rich microbial communities. Abundant fouling with a wide range of morphology and coloration of colonies covers the walls of the Shulgan-Tash cave in the Southern Urals. This cave is also famous for the unique Paleolithic painting discovered in the middle of the last century. We aimed to investigate the diversity, distribution, and potential impact of these biofilms on the cave's Paleolithic paintings, while exploring how environmental factors influence the microbial communities within the cave. RESULTS The cave's biofilm morphotypes were categorized into three types based on the ultrastructural similarities. Molecular taxonomic analysis identified two main clusters of microbial communities, with Actinobacteria dominating in most of them and a unique "CaveCurd" community with Gammaproteobacteria prevalent in the deepest cave sections. The species composition of these biofilms reflects changes in environmental conditions, such as substrate composition, temperature, humidity, ventilation, and CO2 content. Additionally, it was observed that cave biofilms contribute to biocorrosion on cave wall surfaces. CONCLUSIONS The Shulgan-Tash cave presents an intriguing example of a stable extreme ecosystem with diverse microbiota. However, the intense dissolution and deposition of carbonates caused by Actinobacteria pose a potential threat to the preservation of the cave's ancient rock paintings.
Collapse
Affiliation(s)
- Natalia Gogoleva
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondsee, 5310, Austria.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia.
| | | | - Alexander Balkin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Lyudmila Kuzmina
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Daria Kiseleva
- Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
- Institute of Fundamental Education, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russia
| | - Yuri Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| |
Collapse
|
6
|
Mora-Poblete F, Heidari P, Fuentes S. Editorial: Integrating advanced high-throughput technologies to improve plant resilience to environmental challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1218691. [PMID: 37324664 PMCID: PMC10264778 DOI: 10.3389/fpls.2023.1218691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Freddy Mora-Poblete
- Laboratory of Forest Genetics and Biotechnology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Sigfredo Fuentes
- Digital Agriculture, Food and Wine Sciences Group, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| |
Collapse
|
7
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Lateral Root Initiation in Cucumber ( Cucumis sativus): What Does the Expression Pattern of Rapid Alkalinization Factor 34 ( RALF34) Tell Us? Int J Mol Sci 2023; 24:ijms24098440. [PMID: 37176146 PMCID: PMC10179419 DOI: 10.3390/ijms24098440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In Arabidopsis, the small signaling peptide (peptide hormone) RALF34 is involved in the gene regulatory network of lateral root initiation. In this study, we aimed to understand the nature of the signals induced by RALF34 in the non-model plant cucumber (Cucumis sativus), where lateral root primordia are induced in the apical meristem of the parental root. The RALF family members of cucumber were identified using phylogenetic analysis. The sequence of events involved in the initiation and development of lateral root primordia in cucumber was examined in detail. To elucidate the role of the small signaling peptide CsRALF34 and its receptor CsTHESEUS1 in the initial stages of lateral root formation in the parental root meristem in cucumber, we studied the expression patterns of both genes, as well as the localization and transport of the CsRALF34 peptide. CsRALF34 is expressed in all plant organs. CsRALF34 seems to differ from AtRALF34 in that its expression is not regulated by auxin. The expression of AtRALF34, as well as CsRALF34, is regulated in part by ethylene. CsTHESEUS1 is expressed constitutively in cucumber root tissues. Our data suggest that CsRALF34 acts in a non-cell-autonomous manner and is not involved in lateral root initiation in cucumber.
Collapse
Affiliation(s)
- Alexey S Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Elena L Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Elizaveta D Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
8
|
Shumilina J, Kiryushkin AS, Frolova N, Mashkina V, Ilina EL, Puchkova VA, Danko K, Silinskaya S, Serebryakov EB, Soboleva A, Bilova T, Orlova A, Guseva ED, Repkin E, Pawlowski K, Frolov A, Demchenko KN. Integrative Proteomics and Metabolomics Analysis Reveals the Role of Small Signaling Peptide Rapid Alkalinization Factor 34 (RALF34) in Cucumber Roots. Int J Mol Sci 2023; 24:7654. [PMID: 37108821 PMCID: PMC10140933 DOI: 10.3390/ijms24087654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators.
Collapse
Affiliation(s)
- Julia Shumilina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Valeria Mashkina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Vera A. Puchkova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Katerina Danko
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | | | | | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Tatiana Bilova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Egor Repkin
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
9
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, Qu C, Lu K. Multi-omics revolution to promote plant breeding efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:1062952. [PMID: 36570904 PMCID: PMC9773847 DOI: 10.3389/fpls.2022.1062952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Crop production is the primary goal of agricultural activities, which is always taken into consideration. However, global agricultural systems are coming under increasing pressure from the rising food demand of the rapidly growing world population and changing climate. To address these issues, improving high-yield and climate-resilient related-traits in crop breeding is an effective strategy. In recent years, advances in omics techniques, including genomics, transcriptomics, proteomics, and metabolomics, paved the way for accelerating plant/crop breeding to cope with the changing climate and enhance food production. Optimized omics and phenotypic plasticity platform integration, exploited by evolving machine learning algorithms will aid in the development of biological interpretations for complex crop traits. The precise and progressive assembly of desire alleles using precise genome editing approaches and enhanced breeding strategies would enable future crops to excel in combating the changing climates. Furthermore, plant breeding and genetic engineering ensures an exclusive approach to developing nutrient sufficient and climate-resilient crops, the productivity of which can sustainably and adequately meet the world's food, nutrition, and energy needs. This review provides an overview of how the integration of omics approaches could be exploited to select crop varieties with desired traits.
Collapse
Affiliation(s)
- Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yue Niu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
10
|
A Neural Network-Based Spectral Approach for the Assignment of Individual Trees to Genetically Differentiated Subpopulations. REMOTE SENSING 2022. [DOI: 10.3390/rs14122898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studying population structure has made an essential contribution to understanding evolutionary processes and demographic history in forest ecology research. This inference process basically involves the identification of common genetic variants among individuals, then grouping the similar individuals into subpopulations. In this study, a spectral-based classification of genetically differentiated groups was carried out using a provenance–progeny trial of Eucalyptus cladocalyx. First, the genetic structure was inferred through a Bayesian analysis using single-nucleotide polymorphisms (SNPs). Then, different machine learning models were trained with foliar spectral information to assign individual trees to subpopulations. The results revealed that spectral-based classification using the multilayer perceptron method was very successful at classifying individuals into their respective subpopulations (with an average of 87% of correct individual assignments), whereas 85% and 81% of individuals were assigned to their respective classes correctly by convolutional neural network and partial least squares discriminant analysis, respectively. Notably, 93% of individual trees were assigned correctly to the class with the smallest size using the spectral data-based multi-layer perceptron classification method. In conclusion, spectral data, along with neural network models, are able to discriminate and assign individuals to a given subpopulation, which could facilitate the implementation and application of population structure studies on a large scale.
Collapse
|
11
|
Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. Multigenerational Exposure to Heat Stress Induces Phenotypic Resilience, and Genetic and Epigenetic Variations in Arabidopsis thaliana Offspring. FRONTIERS IN PLANT SCIENCE 2022; 13:728167. [PMID: 35419019 PMCID: PMC8996174 DOI: 10.3389/fpls.2022.728167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plants are sedentary organisms that constantly sense changes in their environment and react to various environmental cues. On a short-time scale, plants respond through alterations in their physiology, and on a long-time scale, plants alter their development and pass on the memory of stress to the progeny. The latter is controlled genetically and epigenetically and allows the progeny to be primed for future stress encounters, thus increasing the likelihood of survival. The current study intended to explore the effects of multigenerational heat stress in Arabidopsis thaliana. Twenty-five generations of Arabidopsis thaliana were propagated in the presence of heat stress. The multigenerational stressed lineage F25H exhibited a higher tolerance to heat stress and elevated frequency of homologous recombination, as compared to the parallel control progeny F25C. A comparison of genomic sequences revealed that the F25H lineage had a three-fold higher number of mutations [single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)] as compared control lineages, suggesting that heat stress induced genetic variations in the heat-stressed progeny. The F25H stressed progeny showed a 7-fold higher number of non-synonymous mutations than the F25C line. Methylome analysis revealed that the F25H stressed progeny showed a lower global methylation level in the CHH context than the control progeny. The F25H and F25C lineages were different from the parental control lineage F2C by 66,491 and 80,464 differentially methylated positions (DMPs), respectively. F25H stressed progeny displayed higher frequency of methylation changes in the gene body and lower in the body of transposable elements (TEs). Gene Ontology analysis revealed that CG-DMRs were enriched in processes such as response to abiotic and biotic stimulus, cell organizations and biogenesis, and DNA or RNA metabolism. Hierarchical clustering of these epimutations separated the heat stressed and control parental progenies into distinct groups which revealed the non-random nature of epimutations. We observed an overall higher number of epigenetic variations than genetic variations in all comparison groups, indicating that epigenetic variations are more prevalent than genetic variations. The largest difference in epigenetic and genetic variations was observed between control plants comparison (F25C vs. F2C), which clearly indicated that the spontaneous nature of epigenetic variations and heat-inducible nature of genetic variations. Overall, our study showed that progenies derived from multigenerational heat stress displayed a notable adaption in context of phenotypic, genotypic and epigenotypic resilience.
Collapse
|
12
|
MicroRNA Mediated Plant Responses to Nutrient Stress. Int J Mol Sci 2022; 23:ijms23052562. [PMID: 35269700 PMCID: PMC8910084 DOI: 10.3390/ijms23052562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant’s adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants’ sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants’ responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.
Collapse
|
13
|
Tsers I, Meshcherov A, Gogoleva O, Petrova O, Gogoleva N, Ponomareva M, Gogolev Y, Korzun V, Gorshkov V. Alterations in the Transcriptome of Rye Plants following the Microdochium nivale Infection: Identification of Resistance/Susceptibility-Related Reactions Based on RNA-Seq Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122723. [PMID: 34961191 PMCID: PMC8706160 DOI: 10.3390/plants10122723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 05/16/2023]
Abstract
Microdochium nivale is a progressive and devastating phytopathogen that causes different types of cereal crop and grass diseases that are poorly characterized at the molecular level. Although rye (Secale cereale L.) is one of the most resistant crops to most of the phytopathogens, it is severely damaged by M. nivale. The recent high-quality chromosome-scale assembly of rye genome has improved whole-genome studies of this crop. In the present work, the first transcriptome study of the M. nivale-infected crop plant (rye) with the detailed functional gene classification was carried out, along with the physiological verification of the RNA-Seq data. The results revealed plant reactions that contributed to their resistance or susceptibility to M. nivale. Phytohormone abscisic acid was shown to promote plant tolerance to M. nivale. Flavonoids were proposed to contribute to plant resistance to this pathogen. The upregulation of plant lipase encoding genes and the induction of lipase activity in M. nivale-infected plants revealed in our study were presumed to play an important role in plant susceptibility to the studied phytopathogen. Our work disclosed important aspects of plant-M. nivale interactions, outlined the directions for future studies on poorly characterized plant diseases caused by this phytopathogen, and provided new opportunities to improve cereals breeding and food security strategies.
Collapse
Affiliation(s)
- Ivan Tsers
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Azat Meshcherov
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Olga Gogoleva
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Olga Petrova
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
| | - Natalia Gogoleva
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
| | - Mira Ponomareva
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
| | - Yuri Gogolev
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Vladimir Gorshkov
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (A.M.); (O.G.); (O.P.); (N.G.); (M.P.); (Y.G.); (V.K.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
- Correspondence:
| |
Collapse
|
14
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|