1
|
Wang Y, Cai S, Wen W, Tan Y, Wang W, Xu J, Xiong P. A Network Pharmacology Study and In Vitro Evaluation of the Bioactive Compounds of Kadsura coccinea Leaf Extract for the Treatment of Type 2 Diabetes Mellitus. Molecules 2025; 30:1157. [PMID: 40076380 PMCID: PMC11901907 DOI: 10.3390/molecules30051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Kadsura coccinea is a traditional Chinese medicine whose roots have long been used to treat various ailments, but little is known about the efficacy of its leaves. In this study, the antidiabetic activity of K. coccinea leaf extract (KCLE) was determined, the main components of KCLE were identified using UPLC-TOF-MS, and network pharmacology and molecular docking were integrated to elucidate the antidiabetic mechanism of KCLE. The results showed that KCLE effectively increased the glucose consumption of IR-HepG2 cells through pyruvate kinase (PK) and hexokinase (HK), promoted glycogen synthesis, and inhibited α-glucosidase and α-amylase activities. KCLE also improves diabetes by regulating AKT1, TNF, EGFR, and GSK3β. These targets (especially AKT1 and TNF) have a high binding affinity with the main active ingredients of KCLE (rutin, luteolin, demethylwedelolactone, maritimetin, and polydatin). Pathway enrichment analysis showed that the antidiabetic effect of KCLE was closely related to the PI3K-Akt signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway, and FoxO signaling pathway. These findings provide a theoretical basis for promoting the pharmacodynamic development of K. coccinea and its application in treating diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Xiong
- Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
3
|
Tung XY, Yip JQ, Gew LT. Searching for Natural Plants with Antimelanogenesis and Antityrosinase Properties for Cosmeceutical or Nutricosmetics Applications: A Systematic Review. ACS OMEGA 2023; 8:33115-33201. [PMID: 37744793 PMCID: PMC10515176 DOI: 10.1021/acsomega.3c02994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
Excessive UV radiation (UVR) exposure has been shown in studies to be a major risk factor for most melanomas, causing premature skin aging as well as immune system suppression due to the increased production of hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) during the melanogenesis process. Although several compounds with antioxidant and antityrosinase activities are widely used in the cosmetic industry, like kojic acid, hydroquinone, ascorbic acid, and arbutin, their use has been limited due to their adverse effects on the skin and cytotoxic issues. Recently, attempts have been made to develop new natural skin-lightening products by using plant extracts that are less toxic and exhibit numerous biological properties with great market demand. In this study, information on the depigmentation effects of various natural plant species was gathered from the SCOPUS database according to the PRISMA guidelines. A total of 414 records were retrieved, and finally, 76 articles were included in the qualitative synthesis by fulfilling all the inclusion criteria. In this review, we discuss the extraction methods and biological assays of 75 highly potential plant species, including the olive, yuzu, longan, and lotus. We concluded that the use of natural plants as skin-whitening agents is highly effective as there is a significant correlation between the content of polyphenolic compounds, antimelanogenesis, antityrosinase, and antioxidant activities. However, it is worth noting that the use of extraction methods or types of solvents is very important in determining the biological activities of plants.
Collapse
Affiliation(s)
- Xin Yee Tung
- Department of Biological Sciences, School
of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Jia Qi Yip
- Department of Biological Sciences, School
of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Lai Ti Gew
- Department of Biological Sciences, School
of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Sharma A, Kumar A, Singh AK, Singh H, Kumar KJ, Kumar P. Phytochemical Profiling and Pharmacological Evaluation of Leaf Extracts of Ruellia tuberosa L.: An In Vitro and In Silico Approach. Chem Biodivers 2023; 20:e202300495. [PMID: 37539766 DOI: 10.1002/cbdv.202300495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
The present study was designed to appraise the photoprotective, antioxidant, and antibacterial bioactivities of Ruellia tuberosa leaves extracts (RtPE, RtChl, RtEA, RtAc, RtMe, and RtHMe). The results showed that, RtHMe extracts of R. tuberosa was rich in total phenolic content, i. e., 1.60 mgGAE/g dry extract, while highest total flavonoid content was found in RtAc extract, i. e., 0.40 mgQE/g. RtMe showed effective antioxidant activity (%RSA: 58.16) at the concentration of 120 μL. RtMe, RtEA and RtHMe exhibited effective in vitro antibacterial activity against Gram-negative bacteria (E. coli). In silico docking studies revealed that paucifloside (-11.743 kcal/mol), indole-3-carboxaldehyde (-7.519 kcal/mol), nuomioside (-7.275 kcal/mol), isocassifolioside (-6.992 kcal/mol) showed best docking score against PDB ID 2EX8 [penicillin binding protein 4 (dacB) from Escherichia coli, complexed with penicillin-G], PDB ID 6CQA (E. coli dihydrofolate reductase protein complexed with inhibitor AMPQD), PDB ID 2Y2I [Penicillin-binding protein 1B in complex with an alkyl boronate (ZA3)] and PDB ID 2OLV (from S. aureus), respectively. Docked phytochemicals also showed good drug likeness properties.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India-, 151401
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India-, 835215
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India-, 151401
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India-, 151401
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India-, 151401
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India-, 835215
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India-, 151401
| |
Collapse
|
5
|
Kadsura coccinea Lignan Metabolism Based on Metabolome and Transcriptome Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3152155. [PMID: 35957804 PMCID: PMC9359851 DOI: 10.1155/2022/3152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Kadsura coccinea is an important resource of traditional Chinese medicine. We find out the gene information of enzymes related to lignan biosynthesis and metabolism of Kadsura coccinea, so as to provide a scientific basis for the breeding of new varieties of Kadsura coccinea. In this paper, 2-year-old Kadsura coccinea from Hunan Kadsura coccinea provincial germplasm resource bank was used as the material and its root, stem, and leaf were analyzed by extensive targeted metabolomics combined with transcriptome sequencing. The results showed the following: (1) 51 lignans were detected by metabolome analysis, and the content of lignans in roots was higher than that in stems and leaves. The high content of lignans in roots, stems, and leaves includes ring-opening isolarch phenol-4-o-glucoside, narrow leaf schisandrin E, and schisandrin B. (2) After transcriptome sequencing, 13 classes of 137 Unigenes related to lignan biosynthesis pathway were retrieved. The analysis of differential genes in different parts showed that the overall expression amount and species of Kadsura coccinea lignan synthase gene in stems and leaves were closer than those in roots. CCoAOMT, C3H, and SIDR gene families are mainly expressed in roots and stems. (3) Metabolome combined with transcriptome analysis further screened these genes and obtained 11 genes of enzyme gene families such as HCT, DIR, COMT, CAD, SIDR, and PLR, which are highly correlated in lignan synthesis. Therefore, there are many lignans and their synthase-related genes in Kadsura coccinea roots, stems, and leaves, but the content and expression of different lignans and their synthase-related genes are quite different in each part. In this study, the gene information of the Kadsura coccinea lignan biosynthesis enzyme was obtained for the first time, which laid a good foundation for the cloning and molecular breeding of the key enzyme gene of lignan biosynthesis.
Collapse
|
6
|
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The Modulation of Melanogenesis in B16 Cells Upon Treatment with Plant Extracts and Isolated Plant Compounds. Molecules 2022; 27:molecules27144360. [PMID: 35889231 PMCID: PMC9324663 DOI: 10.3390/molecules27144360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Plants are a rich source of secondary metabolites that exhibit numerous desired properties. The compounds may influence the biology of melanocytes, pigment cells that produce melanin, by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its downstream target is microphthalmia-associated transcription factor, responsible for the expression of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and isolated plant compounds in B16 cells. Database searches were conducted using online-based library search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpigmentation by changing the level of melanin production, which may pose a significant cosmetic issue. Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation disorders.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
- Correspondence:
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|