1
|
Shrestha AMS, Gonzales MEM, Ong PCL, Larmande P, Lee HS, Jeung JU, Kohli A, Chebotarov D, Mauleon RP, Lee JS, McNally KL. RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci. Gigascience 2024; 13:giae013. [PMID: 38832465 PMCID: PMC11148593 DOI: 10.1093/gigascience/giae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. RESULTS We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. CONCLUSIONS RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.
Collapse
Affiliation(s)
- Anish M S Shrestha
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Mark Edward M Gonzales
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
| | - Phoebe Clare L Ong
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
| | - Pierre Larmande
- DIADE, Univ Montpellier, Cirad, IRD, 34394 Montpellier, France
| | - Hyun-Sook Lee
- National Institute of Crop Science, Wanju-gun 55365, Republic of Korea
| | - Ji-Ung Jeung
- National Institute of Crop Science, Wanju-gun 55365, Republic of Korea
| | - Ajay Kohli
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Ramil P Mauleon
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Jae-Sung Lee
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Kenneth L McNally
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| |
Collapse
|
2
|
Hu CC, Wu CY, Yang MY, Huang JZ, Wu CW, Hong CY. Catalase associated with antagonistic changes of abscisic acid and gibberellin response, biosynthesis and catabolism is involved in eugenol-inhibited seed germination in rice. PLANT CELL REPORTS 2023; 43:10. [PMID: 38135798 DOI: 10.1007/s00299-023-03096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE The inhibitory effect of eugenol on rice germination is mediated by a two-step modulatory process: Eugenol first regulates the antagonism of GA and ABA, followed by activation of catalase activity. The natural monoterpene eugenol has been reported to inhibit preharvest sprouting in rice. However, the inhibitory mechanism remains obscure. In this study, simultaneous monitoring of GA and ABA responses by the in vivo GA and ABA-responsive dual-luciferase reporter system showed that eugenol strongly inhibited the GA response after 6 h of imbibition, whereas eugenol significantly enhanced the ABA response after 12 h of imbibition. Gene expression analysis revealed that eugenol significantly induced the ABA biosynthetic genes OsNCED2, OsNCED3, and OsNCED5, but notably suppressed the ABA catabolic genes OsABA8ox1 and OsABA8ox2. Conversely, eugenol inhibited the GA biosynthetic genes OsGA3ox2 and OsGA20ox4 but significantly induced the GA catabolic genes OsGA2ox1 and OsGA2ox3 during imbibition. OsABI4, the key signaling regulator of ABA and GA antagonism, was notably induced before 12 h and suppressed after 24 h by eugenol. Moreover, eugenol markedly reduced the accumulation of H2O2 in seeds after 36 h of imbibition. Further analysis showed that eugenol strongly induced catalase activity, protein accumulation, and the expression of three catalase genes. Most importantly, mitigation of eugenol-inhibited seed germination was found in the catc mutant. These findings indicate that catalase associated with antagonistic changes of ABA and GA is involved in the sequential regulation of eugenol-inhibited seed germination in rice.
Collapse
Affiliation(s)
- Chi-Chieh Hu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan
- Kaohsiung District Agricultural Research and Extension Station, Changzhi Township, Pingtung County, 908126, Taiwan
| | - Chin-Yu Wu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan
| | - Min-Yu Yang
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan
| | - Jian-Zhi Huang
- Department of Plant Industry, National Pingtung University of Science and Technology, Neipu Township, Pingtung County, 91201, Taiwan
| | - Chih-Wen Wu
- Kaohsiung District Agricultural Research and Extension Station, Changzhi Township, Pingtung County, 908126, Taiwan
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Lee CM, Park HS, Baek MK, Jeong OY, Seo J, Kim SM. QTL mapping and improvement of pre-harvest sprouting resistance using japonica weedy rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1194058. [PMID: 37342139 PMCID: PMC10277695 DOI: 10.3389/fpls.2023.1194058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 06/22/2023]
Abstract
The stability of cultivation and production in terms of crop yield has been threatened by climate change due to global warming. Pre-harvest sprouting (PHS) is a threat to crops, especially staple foods, including rice, because of reductions in yield and quality. To address the problem of precocious germination before harvest, we performed quantitative trait loci (QTL) analysis for PHS using F8 RILs populations derived from japonica weedy rice in Korea. QTL analysis revealed that two stable QTLs, qPH7 and qPH2, associated with PHS resistance were identified on chromosomes 7 and 2, respectively, explaining approximately 38% of the phenotypic variation. The QTL effect in the tested lines significantly decreased the degree of PHS, based on the number of QTLs included. Through fine mapping for main QTL qPH7, the region for the PHS was found to be anchored within 23.575-23.785 Mbp on chromosome 7 using 13 cleaved amplified sequence (CAPS) markers. Among 15 open reading frames (ORFs) within the detected region, one ORF, Os07g0584366, exhibited upregulated expression in the resistant donor, which was approximately nine times higher than that of susceptible japonica cultivars under PHS-inducing conditions. Japonica lines with QTLs related to PHS resistance were developed to improve the characteristics of PHS and design practical PCR-based DNA markers for marker-assisted backcrosses of many other PHS-susceptible japonica cultivars.
Collapse
Affiliation(s)
- Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Hyun-Su Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Man-Kee Baek
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - O-Young Jeong
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jeonghwan Seo
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Suk-Man Kim
- Department of Ecological & Environmental System, Kyungpook National University, Sangju, Republic of Korea
| |
Collapse
|
4
|
Park SY, Jung WJ, Bang G, Hwang H, Kim JY. Transcriptome and Proteome Co-Profiling Offers an Understanding of Pre-Harvest Sprouting (PHS) Molecular Mechanisms in Wheat ( Triticum aestivum). PLANTS (BASEL, SWITZERLAND) 2022; 11:2807. [PMID: 36365261 PMCID: PMC9657071 DOI: 10.3390/plants11212807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
While wheat (Triticum aestivum L.) is a widely grown and enjoyed crop, the diverse and complex global situation and climate are exacerbating the instability of its supply. In particular, pre-harvest sprouting (PHS) is one of the major abiotic stresses that frequently occurs due to irregular climate conditions, causing serious damage to wheat and its quality. In this study, transcriptomic analysis with RNA-seq and proteomic analysis with LC-MS/MS were performed in PHS-treated spikes from two wheat cultivars presenting PHS sensitivity and tolerance, respectively. A total of 13,154 differentially expressed genes (DEGs) and 706 differentially expressed proteins (DEPs) were identified in four comparison groups between the susceptible/tolerant cultivars. Gene function and correlation analysis were performed to determine the co-profiled genes and proteins affected by PHS treatment. In the functional annotation of each comparative group, similar functions were confirmed in each cultivar under PHS treatment; however, in Keumgang PHS+7 (K7) vs. Woori PHS+7 (W7), functional annotations presented clear differences in the "spliceosome" and "proteasome" pathways. In addition, our results indicate that alternative splicing and ubiquitin-proteasome support the regulation of germination and seed dormancy. This study provides an advanced understanding of the functions involved in transcription and translation related to PHS mechanisms, thus enabling specific proposals for the further analysis of germination and seed dormancy mechanisms and pathways in wheat.
Collapse
Affiliation(s)
- Sang Yong Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
5
|
Xiang J, Zhang C, Wang N, Liang Z, Zhenzhen Z, Liang L, Yuan H, Shi Y. Genome-Wide Association Study Reveals Candidate Genes for Root-Related Traits in Rice. Curr Issues Mol Biol 2022; 44:4386-4405. [PMID: 36286016 PMCID: PMC9601093 DOI: 10.3390/cimb44100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Root architecture is a determinant factor of drought resistance in rice and plays essential roles in the absorption of water and nutrients for the survival of rice plants. Dissection of the genetic basis for root structure can help to improve stress-resistance and grain yield in rice breeding. In this study, a total of 391 rice (Oryz asativa L.) accessions were used to perform a genome-wide association study (GWAS) on three root-related traits in rice, including main root length (MRL), average root length (ARL), and total root number (TRN). As a result, 13 quantitative trait loci (QTLs) (qMRL1.1, qMRL1.2, qMRL3.1, qMRL3.2, qMRL3.3, qMRL4.1, qMRL7.1, qMRL8.1, qARL1.1, qARL9.1, qTRN9.1, qTRN9.2, and qTRN11.1) significantly associated with the three traits were identified, among which three (qMRL3.2, qMRL4.1 and qMRL8.1) were overlapped with OsGNOM1, OsARF12 and qRL8.1, respectively, and ten were novel QTLs. Moreover, we also detected epistatic interactions affecting root-related traits and identified 19 related genetic interactions. These results lay a foundation for cloning the corresponding genes for rice root structure, as well as provide important genomic resources for breeding high yield rice varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China
| |
Collapse
|
6
|
Lee C, Cheon KS, Shin Y, Oh H, Jeong YM, Jang H, Park YC, Kim KY, Cho HC, Won YJ, Baek J, Cha YS, Kim SL, Kim KH, Ji H. Development and Application of a Target Capture Sequencing SNP-Genotyping Platform in Rice. Genes (Basel) 2022; 13:genes13050794. [PMID: 35627177 PMCID: PMC9141132 DOI: 10.3390/genes13050794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022] Open
Abstract
The development of efficient, robust, and high-throughput SNP genotyping platforms is pivotal for crop genetics and breeding. Recently, SNP genotyping platforms based on target capture sequencing, which is very flexible in terms of the number of SNP markers, have been developed for maize, cassava, and fava bean. We aimed to develop a target capture sequencing SNP genotyping platform for rice. A target capture sequencing panel containing 2565 SNPs, including 1225 SNPs informative for japonica and 1339 SNPs informative for indica, was developed. This platform was used in diversity analysis of 50 rice varieties. Of the 2565 SNP markers, 2341 (91.3%) produced useful polymorphic genotype data, enabling the production of a phylogenetic tree of the 50 varieties. The mean number of markers polymorphic between any two varieties was 854. The platform was used for QTL mapping of preharvest sprouting (PHS) resistance in an F8 recombinant inbred line population derived from the cross Odae × Joun. A genetic map comprising 475 markers was constructed, and two QTLs for PHS resistance were identified on chromosomes 4 and 11. This system is a powerful tool for rice genetics and breeding and will facilitate QTL studies and gene mapping, germplasm diversity analysis, and marker-assisted selection.
Collapse
Affiliation(s)
- Chaewon Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Kyeong-Seong Cheon
- Division of Forest Tree Improvement and Biotechnology, Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Korea;
| | - Yunji Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
- Genecell Biotech Inc., Wanju, 55322, Korea
| | - Hyoja Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Young-Min Jeong
- Seed Industry Promotion Center, Korea Agriculture Technology Promotion Agency (KOAT), Gimje 54324, Korea;
| | - Hoon Jang
- CELEMICS, Seoul 08506, Korea; (H.J.); (Y.-C.P.)
| | | | - Kyung-Yun Kim
- INSILICOGEN, Yongin 16954, Korea; (K.-Y.K.); (H.-C.C.)
| | - Hang-Chul Cho
- INSILICOGEN, Yongin 16954, Korea; (K.-Y.K.); (H.-C.C.)
| | - Yong-Jae Won
- Cheorwon Branch, National Institute of Crop Science, Rural Development Administration (RDA), Cheorwon 24010, Korea;
| | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Young-Soon Cha
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Song-Lim Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Hyeonso Ji
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
- Correspondence: ; Tel.: +82-63-238-4657
| |
Collapse
|
7
|
Seed Dormancy and Pre-Harvest Sprouting in Rice-An Updated Overview. Int J Mol Sci 2021; 22:ijms222111804. [PMID: 34769234 PMCID: PMC8583970 DOI: 10.3390/ijms222111804] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting is a critical phenomenon involving the germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. As it results in reduced grain yield and quality, it is a common problem for the farmers who have cultivated the rice and wheat across the globe. Crop yields need to be steadily increased to improve the people’s ability to adapt to risks as the world’s population grows and natural disasters become more frequent. To improve the quality of grain and to avoid pre-harvest sprouting, a clear understanding of the crops should be known with the use of molecular omics approaches. Meanwhile, pre-harvest sprouting is a complicated phenomenon, especially in rice, and physiological, hormonal, and genetic changes should be monitored, which can be modified by high-throughput metabolic engineering techniques. The integration of these data allows the creation of tailored breeding lines suitable for various demands and regions, and it is crucial for increasing the crop yields and economic benefits. In this review, we have provided an overview of seed dormancy and its regulation, the major causes of pre-harvest sprouting, and also unraveled the novel avenues to battle pre-harvest sprouting in cereals with special reference to rice using genomics and transcriptomic approaches.
Collapse
|