1
|
Chmur M, Bajguz A. Comparative Efficacy of Melatonin and Brassinolide in Mitigating the Adverse Effects of Cadmium on Wolffia arrhiza. Int J Mol Sci 2025; 26:692. [PMID: 39859406 PMCID: PMC11765764 DOI: 10.3390/ijms26020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin (MT) and brassinolide (BL) are phytohormones that regulate various physiological processes in plants. This study investigates their effects on Wolffia arrhiza when exposed to cadmium (Cd). Plant hormones were quantified using liquid chromatography-mass spectrometry, while photosynthetic pigments and phytochelatins (PCs) were analyzed through high-performance liquid chromatography. Protein, monosaccharide levels, and antioxidant activities were also spectrophotometrically measured. The findings reveal that MT and BL treatment decreased Cd accumulation in W. arrhiza compared to plants only exposed to Cd. MT was particularly effective in reversing Cd-induced growth inhibition and reducing stress markers more significantly than BL. It also enhanced antioxidant activity and maintained higher levels of photosynthetic pigments, proteins, and sugars. Although BL was less effective in these aspects, it promoted greater synthesis of glutathione and PCs in Cd-exposed duckweed. Overall, both MT and BL alleviate the negative impact of Cd on W. arrhiza, confirming their crucial role in supporting plant health under metal stress conditions.
Collapse
Affiliation(s)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
2
|
Muslykhah U, Suriyapha C, Phupaboon S, Pongsub S, Matra M, Dagaew G, Sommai S, Wanapat M. Potential use of Wolffia globosa powder supplementation on in vitro rumen fermentation characteristics, nutrient degradability, microbial population, and methane mitigation. Sci Rep 2024; 14:28611. [PMID: 39562634 PMCID: PMC11577031 DOI: 10.1038/s41598-024-78475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
This study examined the potential of duckweed powder (DWP) on in vitro fermentation characteristics, nutrient degradability, microbial change, and methane (CH4) production using in vitrostudy technique. This investigation used a 2 × 6 factorial arrangement in a completely randomized design (CRD) by different roughage-to-concentrate (R: C) ratios of 60:40 and 40:60 combined with DWP supplementation levels at 0, 2, 4, 6, 8, and 10% of the total dry matter (DM) substrate, respectively. There was an interaction effect by R: C ratios combined with DWP supplementations that changed gas production rate, pH value (4 h; h), volatile fatty acid (VFA) (8 h), in vitro dry matter degradability (IVDMD) at 12 h, and concentration of ammonium nitrogen (NH3-N) (p < 0.05). Furthermore, the R: C ratio (40:60) significantly decreased CH4 production (4 and 8 h), pH (8 h), and Ruminococcus albus (8 h) (p < 0.05), while it significantly increased total VFA (8 h), and nutrient degradability (p < 0.05). DWP 4% significantly increased to the highest of gas production, improved nutrient degradability (IVDMD at 24 h and in vitro organic matter degradability; IVOMD at 12 h), whereas significantly decreased Methanobacteriales (8 h) and CH4 production. DWP 4% has potential as a ruminant feed additive for reducing Methanobacteriales and CH4 emission and enhancing rumen fermentation.
Collapse
Affiliation(s)
- Uswatun Muslykhah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sunisa Pongsub
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
- Major of Animal Science, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham , 44150, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Gargiulo L, Mele G, Izzo LG, Romano LE, Aronne G. Local mapping of root orientation traits by X-ray micro-CT and 3d image analysis: A study case on carrot seedlings grown in simulated vs real weightlessness. PLANT METHODS 2024; 20:150. [PMID: 39342217 PMCID: PMC11439289 DOI: 10.1186/s13007-024-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Root phenotyping is particularly challenging because of complexity and inaccessibility of root apparatus. Orientation is one of the most important architectural traits of roots and its characterization is generally addressed using multiple approaches often based on overall measurements which are difficult to correlate to plant specific physiological aspects and its genetic features. Hence, a 3D image analysis approach, based on the recent method of Straumit, is proposed in this study to obtain a local mapping of root angles. RESULTS Proposed method was applied here on radicles of carrot seedlings grown in real weightlessness on the International Space Station (ISS) and on Earth simulated weightlessness by clinorotation. A reference experiment in 1 g static condition on Earth was also performed. Radicles were imaged by X-ray micro-CT and two novel root orientation traits were defined: the "root angle to sowing plane" (RASP) providing accurate angle distributions for each analysed radicle and the "root orientation changes" (ROC) number. The parameters of the RASP distributions and the ROC values did not exhibit any significant difference in orientation between radicles grown under clinorotation and on the ISS. Only a slight thickening in root corners was found in simulated vs real weightlessness. Such results showed that a simple uniaxial clinostat can be an affordable analog in experimental studies reckoning on weightless radicles growth. CONCLUSIONS The proposed local orientation mapping approach can be extended also to different root systems providing a contribution in the challenging task of phenotyping complex and important plant structures such as roots.
Collapse
Affiliation(s)
- L Gargiulo
- Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council, Portici, Italy
| | - G Mele
- Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council, Portici, Italy.
| | - L G Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - L E Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - G Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
4
|
Romano LE, van Loon JJWA, Izzo LG, Iovane M, Aronne G. Effects of altered gravity on growth and morphology in Wolffia globosa implications for bioregenerative life support systems and space-based agriculture. Sci Rep 2024; 14:410. [PMID: 38172193 PMCID: PMC10764921 DOI: 10.1038/s41598-023-49680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding the response of plants to varied gravitational conditions is vital for developing effective food production in space bioregenerative life support systems. This study examines the impact of altered gravity conditions on the growth and morphological responses of Wolffia globosa (commonly known as "water lentils" or "duckweed"), assessing its potential as a space crop. Although an experiment testing the effect of simulated microgravity on Wolffia globosa has been previously conducted, for the first time, we investigated the effect of multiple gravity levels on the growth and morphological traits of Wolffia globosa plants. The plant responses to simulated microgravity, simulated partial gravity (Moon), and hypergravity environments were evaluated using random positioning machines and the large-diameter centrifuge. As hypothesized, we observed a slight reaction to different gravitational levels in the growth and morphological traits of Wolffia globosa. The relative growth rates (RGR) of plants subjected to simulated microgravity and partial gravity were reduced when compared to those in other gravity levels. The morphological analysis revealed differences in plant dimensions and frond length-to-width ratios under diverse gravity conditions. Our findings showed that Wolffia globosa is responsive to gravitational changes, with its growth and morphological adaptations being slightly influenced by varying gravitational environments. As for other crop species, growth was reduced by the microgravity conditions; however, RGR remained substantial at 0.33 a day. In conclusion, this study underscores the potential of Wolffia globosa as a space crop and its adaptability to diverse gravitational conditions, contributing to the development of sustainable food production and bioregenerative life support systems for future space exploration missions.
Collapse
Affiliation(s)
- Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Jack J W A van Loon
- Department Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences and Amsterdam Bone Center (ABC), Amsterdam University Medical Center Location VUmc and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- TEC-MMG-LIS Lab, European Space Agency (ESA) Technology Center (ESTEC), Noordwijk, The Netherlands
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Maurizio Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
5
|
Oláh V, Appenroth KJ, Sree KS. Duckweed: Research Meets Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3307. [PMID: 37765471 PMCID: PMC10535908 DOI: 10.3390/plants12183307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The Special Issue "Duckweed: Research Meets Applications" of the journal Plants (ISSN 2223-7747) presents a comprehensive update of the current progress in the field [...].
Collapse
Affiliation(s)
- Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Klaus-Juergen Appenroth
- Matthias Schleiden Institute–Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
6
|
Chmur M, Bajguz A. Melatonin Involved in Protective Effects against Cadmium Stress in Wolffia arrhiza. Int J Mol Sci 2023; 24:ijms24021178. [PMID: 36674694 PMCID: PMC9867261 DOI: 10.3390/ijms24021178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Melatonin (MT) is a new plant hormone that protects against adverse environmental conditions. In the present study, the responses of Wolffia arrhiza exposed to cadmium (Cd) and MT were analyzed. Quantitative analysis of MT and precursors of its biosynthesis was performed using LC-MS-MS. The photosynthetic pigments and phytochelatins (PCs) contents were determined using HPLC, while protein and monosaccharides, stress markers, and antioxidant levels were determined using spectrophotometric methods. Interestingly, the endogenous level of MT and its substrates in W. arrhiza exposed to 1-100 µM Cd was significantly higher compared to the control. Additionally, the application of 25 µM MT and Cd intensified the biosynthesis of these compounds. The most stimulatory effect on the growth and content of pigments, protein, and sugars was observed in plants treated with 25 µM MT. In contrast, Cd treatment caused a decrease in plant weight and level of these compounds, while the application of 25 µM MT mitigated the inhibitory effect of Cd. Additionally, Cd enhanced the level of stress markers; simultaneously, MT reduced their content in duckweed exposed to Cd. In plants treated with Cd, PC levels were increased by Cd treatment and by 25 µM MT. These results confirmed that MT mitigated the adverse effect of Cd. Furthermore, MT presence was reported for the first time in W. arrhiza. In summary, MT is an essential phytohormone for plant growth and development, especially during heavy metal stress.
Collapse
|
7
|
Selection of Anabaena sp. PCC 7938 as a Cyanobacterium Model for Biological ISRU on Mars. Appl Environ Microbiol 2022; 88:e0059422. [PMID: 35862672 PMCID: PMC9361815 DOI: 10.1128/aem.00594-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Crewed missions to Mars are expected to take place in the coming decades. After short-term stays, a permanent presence will be desirable to enable a wealth of scientific discoveries. This will require providing crews with life-support consumables in amounts that are too large to be imported from Earth. Part of these consumables could be produced on site with bioprocesses, but the feedstock should not have to be imported. A solution under consideration lies in using diazotrophic, rock-weathering cyanobacteria as primary producers: fed with materials naturally available on site, they would provide the nutrients required by other organisms. This concept has recently gained momentum but progress is slowed by a lack of consistency across contributing teams, and notably of a shared model organism. With the hope to address this issue, we present the work performed to select our current model. We started with preselected strains from the Nostocaceae family. After sequencing the genome of Anabaena sp. PCC 7938-the only one not yet available-we compared the strains' genomic data to determine their relatedness and provide insights into their physiology. We then assessed and compared relevant features: chiefly, their abilities to utilize nutrients from Martian regolith, their resistance to perchlorates (toxic compounds present in the regolith), and their suitability as feedstock for secondary producers (here a heterotrophic bacterium and a higher plant). This led to the selection of Anabaena sp. PCC 7938, which we propose as a model cyanobacterium for the development of bioprocesses based on Mars's natural resources. IMPORTANCE The sustainability of crewed missions to Mars could be increased by biotechnologies which are connected to resources available on site via primary producers: diazotrophic, rock-leaching cyanobacteria. Indeed, this could greatly reduce the mass of payloads to be imported from Earth. The concept is gaining momentum but progress is hindered by a lack of consistency across research teams. We consequently describe the selection process that led to the choice of our model strain, demonstrate its relevance to the field, and propose it as a shared model organism. We expect this contribution to support the development of cyanobacterium-based biotechnologies on Mars.
Collapse
|
8
|
A Machine-Learning Method to Assess Growth Patterns in Plants of the Family Lemnaceae. PLANTS 2022; 11:plants11151910. [PMID: 35893614 PMCID: PMC9332063 DOI: 10.3390/plants11151910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Numerous new technologies have been implemented in image analysis methods that help researchers draw scientific conclusions from biological phenomena. Plants of the family Lemnaceae (duckweeds) are the smallest flowering plants in the world, and biometric measurements of single plants and their growth rate are highly challenging. Although the use of software for digital image analysis has changed the way scientists extract phenomenological data (also for studies on duckweeds), the procedure is often not wholly automated and sometimes relies on the intervention of a human operator. Such a constraint can limit the objectivity of the measurements and generally slows down the time required to produce scientific data. Herein lies the need to implement image analysis software with artificial intelligence that can substitute the human operator. In this paper, we present a new method to study the growth rates of the plants of the Lemnaceae family based on the application of machine-learning procedures to digital image analysis. The method is compared to existing analogical and computer-operated procedures. The results showed that our method drastically reduces the time consumption of the human operator while retaining a high correlation in the growth rates measured with other procedures. As expected, machine-learning methods applied to digital image analysis can overcome the constraints of measuring growth rates of very small plants and might help duckweeds gain worldwide attention thanks to their strong nutritional qualities and biological plasticity.
Collapse
|
9
|
Kocjan D, Dolenc Koce J, Etl F, Dermastia M. Genome Size of Life Forms of Araceae-A New Piece in the C-Value Puzzle. PLANTS (BASEL, SWITZERLAND) 2022; 11:334. [PMID: 35161315 PMCID: PMC8840116 DOI: 10.3390/plants11030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The genome size of an organism is an important trait that has predictive values applicable to various scientific fields, including ecology. The main source of plant C-values is the Plant DNA C-values database of the Royal Botanic Gardens Kew, which currently contains 12,273 estimates. However, it covers only 2.9% of known angiosperm species and has gaps in the life form and geographic distribution of plants. Only 4.5% of C-value estimates come from researchers in Central and South America. This study provides 41 new C-values for the aroid family (Araceae), collected in the Piedras Blancas National Park area in southern Costa Rica, including terrestrial, epiphytic and aquatic life forms. Data from our study are combined with C-value entries in the RBGK database for Araceae. The analysis reveals a wider range of C-values for terrestrial aroids, consistent with other terrestrial plants, a trend toward slightly lower C-values for epiphytic forms, which is more consistent for obligate epiphytes, and comparatively low C-values for aquatic aroids.
Collapse
Affiliation(s)
- Domen Kocjan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Jasna Dolenc Koce
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Florian Etl
- Department of Botany and Biodiversity Research, University of Vienna, A-1030 Wien, Austria;
| | - Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|