1
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
2
|
Mi Q, Pang H, Luan F, Gao P, Liu S. Integrated analysis of biparental and natural populations reveals CRIB domain-containing protein underlying seed coat crack trait in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:95. [PMID: 37014431 DOI: 10.1007/s00122-023-04320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
The scc locus of the watermelon seed coat crack trait was fine mapped on chromosome 3. Cla97C03G056110 (annotated as CRIB domain-containing protein) was regarded as the most likely candidate gene Seed coat crack (scc) is a special characteristic of watermelon compared with other cucurbit crops. However, information regarding the genetic basis of this trait is limited. We conducted a genetic analysis of six generations derived from PI 192938 (scc) and Cream of Saskatchewan (COS) (non-scc) parental lines and found that the scc trait was regulated by a single recessive gene through two years. Bulk segregant analysis sequencing (BSA-seq) and initial mapping placed the scc locus into an 808.8 kb region on chromosome 3. Evaluation of another 1152 F2 plants narrowed the scc locus to a 277.11 kb region containing 37 candidate genes. Due to the lack of molecular markers in the fine-mapping interval, we extracted the genome sequence variations in this 277.11 kb region with in silico BSA among seventeen re-sequenced lines (6 scc and 11 non-scc) and finally delimited the scc locus to an 8.34 kb region with only one candidate gene Cla97C03G056110 (CRIB domain-containing protein). Three single nucleotide polymorphism loci in the promoter region of Cla97C03G056110 altered cis-acting elements that were highly correlated with the nature watermelon panel. The expression of Cla97C03G056110 in seed coat tissue was higher in non-scc than in scc lines and was specifically expressed in seed coat compared with fruit flesh.
Collapse
Affiliation(s)
- Qi Mi
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
| | - Hongqian Pang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| |
Collapse
|
3
|
Kenesi E, Kolbert Z, Kaszler N, Klement É, Ménesi D, Molnár Á, Valkai I, Feigl G, Rigó G, Cséplő Á, Lindermayr C, Fehér A. The ROP2 GTPase Participates in Nitric Oxide (NO)-Induced Root Shortening in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:750. [PMID: 36840099 PMCID: PMC9964108 DOI: 10.3390/plants12040750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Nitric oxide (NO) is a versatile signal molecule that mediates environmental and hormonal signals orchestrating plant development. NO may act via reversible S-nitrosation of proteins during which an NO moiety is added to a cysteine thiol to form an S-nitrosothiol. In plants, several proteins implicated in hormonal signaling have been reported to undergo S-nitrosation. Here, we report that the Arabidopsis ROP2 GTPase is a further potential target of NO-mediated regulation. The ROP2 GTPase was found to be required for the root shortening effect of NO. NO inhibits primary root growth by altering the abundance and distribution of the PIN1 auxin efflux carrier protein and lowering the accumulation of auxin in the root meristem. In rop2-1 insertion mutants, however, wild-type-like root size of the NO-treated roots were maintained in agreement with wild-type-like PIN1 abundance in the meristem. The ROP2 GTPase was shown to be S-nitrosated in vitro, suggesting that NO might directly regulate the GTPase. The potential mechanisms of NO-mediated ROP2 GTPase regulation and ROP2-mediated NO signaling in the primary root meristem are discussed.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Éva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Single Cell Omics ACF, H-6728 Szeged, Hungary
| | - Dalma Ménesi
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München—German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
4
|
Li E, Zhang YL, Qin Z, Xu M, Qiao Q, Li S, Li SW, Zhang Y. Signaling network controlling ROP-mediated tip growth in Arabidopsis and beyond. PLANT COMMUNICATIONS 2023; 4:100451. [PMID: 36114666 PMCID: PMC9860187 DOI: 10.1016/j.xplc.2022.100451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Cell polarity operates across a broad range of spatial and temporal scales and is essential for specific biological functions of polarized cells. Tip growth is a special type of polarization in which a single and unique polarization site is established and maintained, as for the growth of root hairs and pollen tubes in plants. Extensive studies in past decades have demonstrated that the spatiotemporal localization and activity of Rho of Plants (ROPs), the only class of Rho GTPases in plants, are critical for tip growth. ROPs are switched on or off by different factors to initiate dynamic intracellular activities, leading to tip growth. Recent studies have also uncovered several feedback modules for ROP signaling. In this review, we summarize recent progress on ROP signaling in tip growth, focusing on molecular mechanisms that underlie the dynamic distribution and activity of ROPs in Arabidopsis. We also highlight feedback modules that control ROP-mediated tip growth and provide a perspective for building a complex ROP signaling network. Finally, we provide an evolutionary perspective for ROP-mediated tip growth in Physcomitrella patens and during plant-rhizobia interaction.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yu-Ling Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qian Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
5
|
Moreira D, Lopes AL, Silva J, Ferreira MJ, Pinto SC, Mendes S, Pereira LG, Coimbra S, Pereira AM. New insights on the expression patterns of specific Arabinogalactan proteins in reproductive tissues of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1083098. [PMID: 36531351 PMCID: PMC9755587 DOI: 10.3389/fpls.2022.1083098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using β-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions. AGP7 was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region. AGP25 was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues. AGP26 was present in the ovules and pistil valves. AGP27 was expressed in the transmitting tissue, septum and funiculus during seed development. AGP24 was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle. AGP31 was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.
Collapse
Affiliation(s)
- Diana Moreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Lúcia Lopes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Jessy Silva
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
- Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria João Ferreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Cristina Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Luís Gustavo Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Marta Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
7
|
Scheible N, Yoon GM, McCubbin AG. Calmodulin Domain Protein Kinase PiCDPK1 Regulates Pollen Tube Growth Polarity through Interaction with RhoGDI. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030254. [PMID: 35161234 PMCID: PMC8838988 DOI: 10.3390/plants11030254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 05/14/2023]
Abstract
The pollen-specific calcium-dependent protein kinase PiCDPK1 of Petunia inflata has previously been shown to regulate polarity in tip growth in pollen tubes. Here we report the identification of a Rho Guanine Dissociation Inhibitor (PiRhoGDI1) as a PiCDPK1 interacting protein. We demonstrate that PiRhoGDI1 and PiCDPK1 interact in a yeast 2-hybrid assay, as well as in an in vitro pull-down assay, and that PiRhoGDI1 is phosphorylated by PiCDPK1 in vitro. We further demonstrate the PiRhoGDI1 is capable of rescuing the loss of growth polarity phenotype caused by over-expressing PiCDPK1 in vivo using stable transgenic plants. We confirmed that PiRhoGDI1 interacts with a pollen-expressed ROP GTPase isoform consistent with the established role of RhoGDIs in negatively regulating GTPases through their membrane removal and locking them in an inactive cytosolic complex. ROP is a central regulator of polarity in tip growth, upstream of Ca2+, and PiCDPK1 over-expression has been previously reported to lead to dramatic elevation of cytosolic Ca2+ through a positive feedback loop. The discovery that PiCDPK1 impacts ROP regulation via PiRhoGDI1 suggests that PiCDPK1 acts as RhoGDI displacement factor and leads us to propose a model which we hypothesize regulates the rapid recycling of ROP GTPase at the pollen tube tip.
Collapse
|