1
|
Wang M, Mu C, Lin X, Ma W, Wu H, Si D, Ge C, Cheng C, Zhao L, Li H, Zhou D. Foliar Application of Nanoparticles Reduced Cadmium Content in Wheat ( Triticum aestivum L.) Grains via Long-Distance "Leaf-Root-Microorganism" Regulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6900-6912. [PMID: 38613493 DOI: 10.1021/acs.est.3c10506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Foliar application of beneficial nanoparticles (NPs) exhibits potential in reducing cadmium (Cd) uptake in crops, necessitating a systematic understanding of their leaf-root-microorganism process for sustainable development of efficient nano-enabled agrochemicals. Herein, wheat grown in Cd-contaminated soil (5.23 mg/kg) was sprayed with different rates of four commonly used NPs, including nano selenium (SeNPs)/silica (SiO2NPs)/zinc oxide/manganese dioxide. SeNPs and SiO2NPs most effectively reduced the Cd concentration in wheat grains. Compared to the control, Cd concentration in grains was significantly decreased by 35.0 and 33.3% by applying 0.96 mg/plant SeNPs and 2.4 mg/plant SiO2NPs, and the grain yield was significantly increased by 33.9% with SeNPs application. Down-regulated gene expression of Cd transport proteins (TaNramp5 and TaLCT1) and up-regulated gene expression of vacuolar Cd fixation proteins (TaHMA3 and TaTM20) were observed with foliar SeNPs and SiO2NPs use. SeNPs increased the levels of leaf antioxidant metabolites. Additionally, foliar spray of SeNPs resulted in lower abundances of rhizosphere organic acids and reduced Cd bioavailability in rhizosphere soil, and soil microorganisms related to carbon and nitrogen (Solirubrobacter and Pedomicrobium) were promoted. Our findings underscore the potential of the foliar application of SeNPs and SiO2NPs as a plant and rhizosphere soil metabolism-regulating approach to reduce Cd accumulation in wheat grains.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chunyi Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xinying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wenyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
2
|
Yang C, Sun N, Qin X, Liu Y, Sui M, Zhang Y, Hu Y, Mao Z, Chen X, Mao Y, Shen X. Multi-omics analysis reveals the biosynthesis of flavonoids during the browning process of Malus sieversii explants. PHYSIOLOGIA PLANTARUM 2024; 176:e14238. [PMID: 38488414 DOI: 10.1111/ppl.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024]
Abstract
Malus sieversii is a precious apple germplasm resource. Browning of explants is one of the most important factors limiting the survival rate of plant tissue culture. In order to explore the molecular mechanism of the browning degree of different strains of Malus sieversii, we compared the dynamic changes of Malus sieversii and Malus robusta Rehd. during the whole browning process using a multi-group method. A total of 44 048 differentially expressed genes (DEGs) were identified by transcriptome analysis on the DNBSEQ-T7 sequencing platform. KEGG enrichment analysis showed that the DEGs were significantly enriched in the flavonoid biosynthesis pathway. In addition, metabonomic analysis showed that (-)-epicatechin, astragalin, chrysin, irigenin, isoquercitrin, naringenin, neobavaisoflavone and prunin exhibited different degrees of free radical scavenging ability in the tissue culture browning process, and their accumulation in different varieties led to differences in the browning degree among varieties. Comprehensive transcriptome and metabonomics analysis of the data related to flavonoid biosynthesis showed that PAL, 4CL, F3H, CYP73A, CHS, CHI, ANS, DFR and PGT1 were the key genes for flavonoid accumulation during browning. In addition, WGCNA analysis revealed a strong correlation between the known flavonoid structure genes and the selected transcriptional genes. Protein interaction predictions demonstrated that 19 transcription factors (7 MYBs and 12 bHLHs) and 8 flavonoid structural genes had targeted relationships. The results show that the interspecific differential expression of flavonoid genes is the key influencing factor of the difference in browning degree between Malus sieversii and Malus robusta Rehd., providing a theoretical basis for further study on the regulation of flavonoid biosynthesis.
Collapse
Affiliation(s)
- Chen Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Nan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xin Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yangbo Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Mengyi Sui
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yawen Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yanli Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yunfei Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Xiang Shen
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| |
Collapse
|
3
|
Ragab OG, Mamdouh D, Bedair R, Smetanska I, Gruda NS, Yousif SKM, Omer RM, Althobaiti AT, Abd El-Raouf HS, El-Taher AM, El-Sayed AS, Eldemerdash MM. Distinguishing features of Lycium L. species (family Solanaceae) distributed in Egypt based on their anatomical, metabolic, molecular, and ecological characteristics. FRONTIERS IN PLANT SCIENCE 2023; 14:1162695. [PMID: 37251766 PMCID: PMC10213676 DOI: 10.3389/fpls.2023.1162695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Among the 70-80 species of the genus Lycium (family Solanaceae) disjunctly distributed around the world, only three are frequently distributed in different locations in Egypt. Due to the morphological similarities between these three species, there is a need for alternative tools to distinguish them. Thus, the objective of this study was to revise the taxonomic features of Lycium europaeum L., Lycium shawii Roem. & Schult., and Lycium schweinfurthii var. aschersonii (Dammer) Feinbrun in consideration of their anatomical, metabolic, molecular, and ecological characteristics. In addition to analysis of their anatomical and ecological features, DNA barcoding was performed for molecular characterization through internal transcribed spacer (ITS) sequencing and start codon targeted (SCoT) markers. Furthermore, metabolic profiling of the studied species was conducted based on gas chromatography-mass spectrometry (GC-MS). The observed anatomical features of the adaxial and abaxial epidermal layers, type of mesophyll, crystals, number of palisade and spongy layers, and the vascular system showed variations between the studied species. Beyond this, the anatomy of the leaves showed an isobilateral structure in the studied species, without distinct differences. Species were molecularly identified in terms of ITS sequences and SCoT markers. The ITS sequences were deposited in GenBank with accession numbers ON149839.1, OP597546.1, and ON521125.1 for L. europaeum L., L. shawii, and L. schweinfurthii var. aschersonii, respectively. The sequences showed variations in GC content between the studied species; this was 63.6% in L. europaeum, 61.53% in L. shawii, and 63.55% in L. schweinfurthii var. aschersonii. A total of 62 amplified fragments, including 44 polymorphic fragments with a ratio of 70.97%, were obtained in the SCoT analysis, as well as unique amplicons in L. europaeum L., shawii, and L. schweinfurthii var. aschersonii of 5, 11, and 4 fragments, respectively. Through GC-MS profiling, 38 compounds were identified with clear fluctuations in the extracts of each species. Of these, 23 were distinguishing chemicals that could help in chemical identification of the extracts of the studied species. The present study succeeds in identifying alternative clear and diverse characteristics that can be used to distinguish between L. europaeum, L. shawii, and L. schweinfurthii var. aschersonii.
Collapse
Affiliation(s)
- Osama G. Ragab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Diaa Mamdouh
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Weidenbach, Germany
| | - Ramadan Bedair
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Iryna Smetanska
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Weidenbach, Germany
| | - Nazim S. Gruda
- Division of Horticultural Sciences, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sawsan K. M. Yousif
- Department of Chemistry, College of Arts and Science in Baljurashi, Al-Baha University, Al Bahah, Saudi Arabia
| | - Rihab M. Omer
- Department of Chemistry, College of Arts and Science in Baljurashi, Al-Baha University, Al Bahah, Saudi Arabia
| | | | - Hany S. Abd El-Raouf
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Department of Biology, University College, Taif University, Taif, Saudi Arabia
| | - Ahmed M. El-Taher
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ashraf S. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Marwa M. Eldemerdash
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Miguel MDG. Chemical and Biological Properties of Three Poorly Studied Species of Lycium Genus-Short Review. Metabolites 2022; 12:1265. [PMID: 36557303 PMCID: PMC9788301 DOI: 10.3390/metabo12121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The genus Lycium belongs to the Solanaceae family and comprises more than 90 species distributed by diverse continents. Lycium barbarum is by far the most studied and has been advertised as a “superfood” with healthy properties. In contrast, there are some Lycium species which have been poorly studied, although used by native populations. L. europaeum, L. intricatum and L. schweinfurthii, found particularly in the Mediterranean region, are examples of scarcely investigated species. The chemical composition and the biological properties of these species were reviewed. The biological properties of L. barbarum fruits are mainly attributed to polysaccharides, particularly complex glycoproteins with different compositions. Studies regarding these metabolites are practically absent in L. europaeum, L. intricatum and L. schweinfurthii. The metabolites isolated and identified belong mainly to polyphenols, fatty acids, polysaccharides, carotenoids, sterols, terpenoids, tocopherols, and alkaloids (L. europaeum); phenolic acids, lignans, flavonoids, polyketides, glycosides, terpenoids, tyramine derivatives among other few compounds (L. schweinfurthii), and esters of phenolic acids, glycosides, fatty acids, terpenoids/phytosterols, among other few compounds (L. intricatum). The biological properties (antioxidant, anti-inflammatory and cytotoxic against some cancer cell lines) found for these species were attributed to some metabolites belonging to those compound groups. Results of the study concluded that investigations concerning L. europaeum, L. intricatum and L. schweinfurthii are scarce, in contrast to L. barbarum.
Collapse
Affiliation(s)
- Maria da Graça Miguel
- Departamento de Química e Farmácia, Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Dong Q, Yang S, Liao H, He Q, Xiao J. Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury. Food Sci Nutr 2022; 10:4403-4410. [PMID: 36514753 PMCID: PMC9731527 DOI: 10.1002/fsn3.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by cellular damage and inflammation in lesioned brain tissue. Ferulic acid has been shown to have a melioration effect on neurological functions. However, the active pharmacological effects and the underlying mechanisms of ferulic acid against TBI remain unclear. On the basis of network pharmacology and molecular docking methodology, this study aimed to investigate the beneficial effects of ferulic acid in treating TBI, and characterized the detailed biotargets and mechanisms of these actions. The identified core targets were validated via in silico simulation. We identified 91 overlapping targets associated with ferulic acid and TBI. In-silico simulation analysis validated the putative core targets of tumor protein p53, mitogen-activated protein kinase (MAPK) 1, and estrogen receptor 1. The Gene Ontology-enriched annotations and findings were largely associated with cell proliferation, apoptosis, and inflammation in nerve cells. Additional Kyoto Encyclopedia of Genes and Genomes enrichment analysis unmasked the pharmacological pathways of ferulic acid in treating TBI, including the MAPK signaling pathway and hypoxia-inducible factor-1 signaling pathway. Bioinformatic analyses and findings provide a new preclinical strategy for revealing the core targets and network pathways of ferulic acid in treating TBI. Moreover, some bioinformatic findings were computationally validated in silico for exhibiting the neuroprotective action of ferulic acid against TBI.
Collapse
Affiliation(s)
- Qinghua Dong
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Shenglin Yang
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Huafeng Liao
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Qi He
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Junxin Xiao
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| |
Collapse
|
6
|
Danova K, Pistelli L. Plant Tissue Culture and Secondary Metabolites Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233312. [PMID: 36501351 PMCID: PMC9739642 DOI: 10.3390/plants11233312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 05/29/2023]
Abstract
Plants have developed a complex biochemical system for interacting and coping with dynamic environmental challenges throughout their whole life [...].
Collapse
Affiliation(s)
- Kalina Danova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
7
|
Callus-Mediated High-Frequency Plant Regeneration, Phytochemical Profiling, Antioxidant Activity and Genetic Stability in Ruta chalepensis L. PLANTS 2022; 11:plants11121614. [PMID: 35736765 PMCID: PMC9229613 DOI: 10.3390/plants11121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
Efficient methods for callus induction and the high-frequency plant regeneration of Ruta chalepensis L. were established, and the phytochemical potential and antioxidant activity of a donor plant, ex-vitro-established micropropagated plants, and callus were also studied. Yellowish-green callus was induced with a frequency of 97.8% from internode shoot segments of the donor plant growing in soil in the botanical garden cultured on Murashige and Skoog (MS) medium containing 10 μM 2,4-D (2,4-dichlorophenoxyacetic acid) and 1 μM BA (6-benzyladenine). Adventitious shoots were regenerated from the yellowish-green callus on MS medium containing 5.0 μM (BA) and 1.0 μM 1-naphthaleneacetic acid (NAA), with a regeneration frequency of 98.4% and a maximum of 54.6 shoots with an average length of 4.5 cm after 8 weeks. The regenerated shoots were rooted in a medium containing 1.0 μM IBA (indole-3-butyric acid) and successfully transferred to ex vitro conditions in pots containing normal garden soil, with a 95% survival rate. The amounts of alkaloids, phenolics, flavonoids, tannins, and antioxidant activity of the ex-vitro-established micropropagated plants were higher than in the donor plant and callus. The highest contents of hesperidin and rutin (93.3 and 55.9 µg/mg, respectively) were found in the ex-vitro-established micropropagated plants compared to those obtained from the donor plant (91.4 and 31.0 µg/mg, respectively) and callus (59.1 and 21.6 µg/mg, respectively). The genetic uniformity of the ex-vitro-established micropropagated plants was appraised by the ISSR markers and compared with the donor plant. This is the first report describing the callus-mediated plant regeneration, as well as the production of phenolic compounds and antioxidant activities in R. chalepensis, which might be a potential alternative technique for the mass propagation and synthesis of bioactive compounds such as hesperidin and rutin.
Collapse
|
8
|
Micropropagation of Vaccinium corymbosum L.: An Alternative Procedure for the Production of Secondary Metabolites. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vitro culture has become a dependable approach for the mass production of plant material as the market for innovative plant-derived medicinal approaches has grown significantly. Furthermore, because it permits manipulation of biosynthetic routes to boost the production and accumulation of certain compounds, this technology has enormous potential for the manufacture of natural bioactive chemicals. As a result, the goal of this study was to develop an efficient micropropagation system for biomass production and to investigate the accumulation of bioactive compounds from Vaccinium corymbosum L., Duke and Hortblue Petite cultivars. Two in vitro plant tissue culture systems were used for shoots production: a solid medium (5 g/L Plant agar) and liquid medium (Plantform bioreactor). The culture medium used was Woddy Plant Medium (WPM) supplemented with two growth regulators: 0.5 mg/L and 1 mg/L zeatina (Z) and 5 mg/L N6-(2-Isopentenyl) adenine (2iP). The content of phenolic compounds, carotenoids, and chlorophylls of the in vitro shoot extracts were examined via the HPLC-DAD-MS/MS technique. The results showed that cv. Hortblue Petite produced a higher amount of biomass compared with cv. Duke, on all variants of culture media in both systems (solid and liquid), while the shoots extract of the Duke variety in the liquid culture system (under all concentrations of growth regulators) had the highest content of total phenolic compounds (16,665.61 ± 424.93 μg/g). In the case of the lipophilic compounds analysed (chlorophylls and carotenoids), the solid medium reported the highest values, whereas media supplemented with 0.5 mg/L Z was proved to have the richest total content for both cultivars.
Collapse
|
9
|
Optimization of Callus and Cell Suspension Cultures of Lycium schweinfurthii for Improved Production of Phenolics, Flavonoids, and Antioxidant Activity. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lycium schweinfurthii is a traditional medicinal plant grown in the Mediterranean region. As it is used in folk medicine to treat stomach ulcers, it took more attention as a source of valuable secondary metabolites. The in vitro cultures of L. schweinfurthii could be a great tool to produce secondary metabolites at low costs. The presented study aimed to introduce and optimize a protocol for inducing callus and cell suspension cultures as well as estimating phenolic, flavonoid compounds, and antioxidant activity in the cultures of the studied species. Three plant growth regulators (PGRs) were supplemented to MS medium solely or in combination to induce callus from leaf explants. The combination between 2,4-dichlorophenoxy acetic acid (2,4-D) and 1-naphthyl acetic acid (NAA) induced callus in all explants regardless of the concentration. The highest fresh weight of callus (3.92 g) was obtained on MS medium fortified with 1 mg L−1 of both 2,4-D and NAA (DN1) after 7 weeks of culture. DN1 was the best medium for callus multiplication regarding the increase in fresh weight and size of callus. Otherwise, the highest phenolics, flavonoids, and antioxidant activity against DPPH free radicals were of callus on MS fortified with 2 mg L−1 NAA (N2). The cell suspension cultures were cultivated on a liquid N2 medium with different sucrose concentrations of 5–30 g L−1 to observe the possible effects on cells’ multiplication and secondary metabolite production. The highest fresh and viable biomass of 12.01 g was obtained on N2 containing 30 g L−1 sucrose. On the other hand, the cell cultures on N2 medium of 5 and 30 g L−1 sucrose produced phenolics and flavonoids, and revealed antioxidant activity against DPPH and ABTS+ free radicals more than other sucrose concentrations. The presented protocol should be useful in the large-scale production of phenolic and flavonoid compounds from callus and cell cultures of L. schweinfurthii.
Collapse
|