1
|
Parajuli S, Adhikari B, Nepal MP. Insights into genetics of floral development in Amborella trichopoda Baill. through genome-wide survey and expression analysis of MADS-Box transcription factors. Sci Rep 2025; 15:5297. [PMID: 39939686 PMCID: PMC11822109 DOI: 10.1038/s41598-025-88880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.
Collapse
Affiliation(s)
- Sanam Parajuli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Bibek Adhikari
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
2
|
Duan SF, Yu JC, Baldwin TC, Yuan Y, Xiang GS, Cui R, Zhao Y, Mo XC, Lu YC, Liang YL. Genome-wide identification of a MADS-box transcription factor family and their expression during floral development in Coptis teeta wall. BMC PLANT BIOLOGY 2024; 24:1023. [PMID: 39468440 PMCID: PMC11520390 DOI: 10.1186/s12870-024-05714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND MADS-box transcription factors have been shown to be involved in multiple developmental processes, including the regulation of floral organ formation and pollen maturation. However, the role of the MADS-box gene family in floral development of the alpine plant species Coptis teeta Wall, which is widely used in Traditional Chinese Medicine (TCM), is unknown. RESULTS Sixty-six MADS-box genes were identified in the C. teeta genome. These genes were shown to be unevenly distributed throughout the genome of C. teeta. The majority of which (49) were classified as type I MADS-box genes and were further subdivided into four groups (Mα, Mβ, Mγ and Mδ). The remainder were identified as belonging to the type II MADS-box gene category. It was observed that four pairs of segmental and tandem duplication had occurred in the C. teeta MADS-box gene family, and that the ratios of Ka/Ks were less than 1, suggesting that these genes may have experienced purifying selection during evolution. Gene expression profiling analysis revealed that 38 MADS-box genes displayed differential expression patterns between the M and F floral phenotypes. Sixteen of these MADS-box genes were further verified by RT-qPCR. The 3D structure of each subfamily gene was predicted, further indicating that MADS-box genes of the same type possess structural similarities to the known template. CONCLUSIONS These data provide new insights into the molecular mechanism of dichogamy and herkogamy formation in C. teeta and establish a solid foundation for future studies of the MADS-box genes family in this medicinal plant species.
Collapse
Affiliation(s)
- Shao-Feng Duan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ji-Chen Yu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Yuan Yuan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Gui-Sheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, 650201, China
| | - Yan Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xin-Chun Mo
- Department of Applied Technology, Lijiang Normal University, Lijiang, Yunnan, 674100, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Yan-Li Liang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| |
Collapse
|
3
|
Yang X, Zhang M, Xi D, Yin T, Zhu L, Yang X, Zhou X, Zhang H, Liu X. Genome-wide identification and expression analysis of the MADS gene family in sweet orange ( Citrus sinensis) infested with pathogenic bacteria. PeerJ 2024; 12:e17001. [PMID: 38436028 PMCID: PMC10909352 DOI: 10.7717/peerj.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants' MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae.
Collapse
Affiliation(s)
- Xiuyao Yang
- Southwest Forestry University, Kunming, China
| | | | - Dengxian Xi
- Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Southwest Forestry University, Kunming, China
| | - Ling Zhu
- Southwest Forestry University, Kunming, China
| | - Xiujia Yang
- Southwest Forestry University, Kunming, China
| | - Xianyan Zhou
- Institute of Tropical and Subtropical Economic Crops, Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Ruili, China
| | | | | |
Collapse
|
4
|
Duan SF, Zhao Y, Yu JC, Xiang GS, Xiao L, Cui R, Hu QQ, Baldwin TC, Lu YC, Liang YL. Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Front Genet 2024; 15:1349673. [PMID: 38317660 PMCID: PMC10839097 DOI: 10.3389/fgene.2024.1349673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.
Collapse
Affiliation(s)
- Shao-Feng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ji-Chen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Xiao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, China
| | - Qian-Qian Hu
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan-Li Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Cheng S, Jia M, Su L, Liu X, Chu Q, He Z, Zhou X, Lu W, Jiang C. Genome-Wide Identification of the MADS-Box Gene Family during Male and Female Flower Development in Chayote (Sechium edule). Int J Mol Sci 2023; 24:ijms24076114. [PMID: 37047083 PMCID: PMC10094161 DOI: 10.3390/ijms24076114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
The MADS-box gene plays an important role in plant growth and development. As an important vegetable of Cucurbitaceae, chayote has great edible and medicinal value. So far, there is little molecular research on chayote, and there are no reports on the MADS-box transcription factor of chayote. In this study, the MADS-box gene family of chayote was analyzed for the first time, and a total of 70 MADS-box genes were identified, including 14 type I and 56 type II MICK MADS genes. They were randomly distributed on 13 chromosomes except for chromosome 11. The light response element, hormone response element and abiotic stress response element were found in the promoter region of 70 MADS genes, indicating that the MADS gene can regulate the growth and development of chayote, resist abiotic stress, and participate in hormone response; GO and KEGG enrichment analysis also found that SeMADS genes were mainly enriched in biological regulation and signal regulation, which further proved the important role of MADS-box gene in plant growth and development. The results of collinearity showed that segmental duplication was the main driving force of MADS gene expansion in chayote. RNA-seq showed that the expression levels of SeMADS06, SeMADS13, SeMADS26, SeMADS28, SeMADS36 and SeMADS37 gradually increased with the growth of chayote, indicating that these genes may be related to the development of root tubers of 'Tuershao'. The gene expression patterns showed that 12 SeMADS genes were specifically expressed in the male flower in 'Tuershao' and chayote. In addition, SeMADS03 and SeMADS52 may be involved in regulating the maturation of male flowers of 'Tuershao' and chayote. SeMADS21 may be the crucial gene in the development stage of the female flower of 'Tuershao'. This study laid a theoretical foundation for the further study of the function of the MADS gene in chayote in the future.
Collapse
Affiliation(s)
- Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyue Jia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuanxuan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianwen Chu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Zhang D, Zhao XW, Li YY, Ke SJ, Yin WL, Lan S, Liu ZJ. Advances and prospects of orchid research and industrialization. HORTICULTURE RESEARCH 2022; 9:uhac220. [PMID: 36479582 PMCID: PMC9720451 DOI: 10.1093/hr/uhac220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Orchidaceae is one of the largest, most diverse families in angiosperms with significant ecological and economical values. Orchids have long fascinated scientists by their complex life histories, exquisite floral morphology and pollination syndromes that exhibit exclusive specializations, more than any other plants on Earth. These intrinsic factors together with human influences also make it a keystone group in biodiversity conservation. The advent of sequencing technologies and transgenic techniques represents a quantum leap in orchid research, enabling molecular approaches to be employed to resolve the historically interesting puzzles in orchid basic and applied biology. To date, 16 different orchid genomes covering four subfamilies (Apostasioideae, Vanilloideae, Epidendroideae, and Orchidoideae) have been released. These genome projects have given rise to massive data that greatly empowers the studies pertaining to key innovations and evolutionary mechanisms for the breadth of orchid species. The extensive exploration of transcriptomics, comparative genomics, and recent advances in gene engineering have linked important traits of orchids with a multiplicity of gene families and their regulating networks, providing great potential for genetic enhancement and improvement. In this review, we summarize the progress and achievement in fundamental research and industrialized application of orchids with a particular focus on molecular tools, and make future prospects of orchid molecular breeding and post-genomic research, providing a comprehensive assemblage of state of the art knowledge in orchid research and industrialization.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue-Wei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Su L, Cheng S, Liu Y, Xie Y, He Z, Jia M, Zhou X, Zhang R, Li C. Transcriptome and Metabolome Analysis Provide New Insights into the Process of Tuberization of Sechium edule Roots. Int J Mol Sci 2022; 23:ijms23126390. [PMID: 35742832 PMCID: PMC9224348 DOI: 10.3390/ijms23126390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chayote (Sechium edule) produces edible tubers with high starch content after 1 year of growth but the mechanism of chayote tuberization remains unknown. ‘Tuershao’, a chayote cultivar lacking edible fruits but showing higher tuber yield than traditional chayote cultivars, was used to study tuber formation through integrative analysis of the metabolome and transcriptome profiles at three tuber-growth stages. Starch biosynthesis- and galactose metabolism-related genes and metabolites were significantly upregulated during tuber bulking, whereas genes encoding sugars will eventually be exported transporter (SWEET) and sugar transporter (SUT) were highly expressed during tuber formation. Auxin precursor (indole-3-acetamide) and ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, were upregulated, suggesting that both hormones play pivotal roles in tuber development and maturation. Our data revealed a similar tuber-formation signaling pathway in chayote as in potatoes, including complexes BEL1/KNOX and SP6A/14-3-3/FDL. Down-regulation of the BEL1/KNOX complex and upregulation of 14-3-3 protein implied that these two complexes might have distinct functions in tuber formation. Finally, gene expression and microscopic analysis indicated active cell division during the initial stages of tuber formation. Altogether, the integration of transcriptome and metabolome analyses unraveled an overall molecular network of chayote tuberization that might facilitate its utilization.
Collapse
Affiliation(s)
- Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Yuhang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China;
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
- Correspondence:
| | - Mingyue Jia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Ruijie Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Chunyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| |
Collapse
|