1
|
Huang Y, Wu Z, Ma L, Han X, Yan H, Lim SS, Wang Z. Avicularin is a minor aldose reductase inhibitor in defatted seeds of Oenothera biennis L.: Screening, inhibitory kinetics, and interaction mechanism. Food Chem 2025; 473:143100. [PMID: 39893921 DOI: 10.1016/j.foodchem.2025.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Inhibition of aldose reductase (AR) activity is promising for mitigating diabetic complications. Defatted evening primrose seeds (DO), a byproduct of evening primrose oil production, exhibits significant AR inhibitory effects. This study optimized extraction conditions of DO using response surface methodology to maximize the recovery of AR inhibitors (ARIs). A combination of high-speed countercurrent chromatography, affinity-based ultrafiltration, and high-performance liquid chromatography was used to screen ARIs from DO extract. Five compounds were identified as ARIs, with avicularin, a minor ARI, demonstrating the strongest inhibitory activity (IC50 = 4.17 μg mL-1). The inhibitory kinetics and interaction mechanisms of avicularin against AR were investigated, revealing that avicularin acts as a non-competitive inhibitor of AR (Ki = 4.42 μM). Avicularin quenched the intrinsic fluorescence of AR through static quenching, forming non-covalent complexes primarily via hydrogen bonds and van der Waals forces, while also altering the conformational structure and microenvironment of AR, impairing AR activity.
Collapse
Affiliation(s)
- Yueyao Huang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhaoyang Wu
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-Gil, Chuncheon 24252, Republic of Korea.
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xue Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-Gil, Chuncheon 24252, Republic of Korea.
| | - Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Marques AM, Brito LDC, Figueiredo MR. HSCCC Straightforward Fast Preparative Method for Isolation of Two Major Cytotoxic Withanolides from Athenaea fasciculata (Vell.) I.M.C. Rodrigues & Stehmann. PLANTS (BASEL, SWITZERLAND) 2024; 13:3039. [PMID: 39519955 PMCID: PMC11548422 DOI: 10.3390/plants13213039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Athenaea fasciculata belongs to the Solanaceae family and is a promising source of cytotoxic withanolides known as aurelianolides A and B. In the last years, the pharmacological studies of these aurelianolides on different leukemia cell lines have stimulated new studies on their potential as alternative candidates for new lead anticancer drugs. However, the obtention of these two pure compounds by traditional preparative is a costly and long time-consuming process, which is performed in several steps. This study aimed to propose a straightforward approach for isolating aurelianolides A and B using high-speed countercurrent chromatography (HSCCC). In this study, among 10 different solvent systems, the system composed of n-hexane/ethyl acetate/methanol/water 3:6:2:1 (v/v/v/v) was chosen for optimization. This HEMWat system was optimized to 4:8:2:4 (v/v/v/v) and chosen for HSCCC separation in a tail-to-head elution mode. After the HSCCC scale-up procedure, a withanolides mixture (200.0 mg) was separated within 160 min in a single-step purification process. In total, 78.9 mg of aurelianolide A (up to 95.0% purity) and 54.3 mg of aurelianolide B (up to 88.5% purity) was obtained by this fast sequential liquid-liquid partition process. The isolated withanolides were identified by 1H and 13C NMR spectroscopy (this method has proven to be faster and more efficient than classical procedures (CC and Prep-TLC)).
Collapse
Affiliation(s)
- André Mesquita Marques
- Laboratório de Produtos Naturais (TecBio), Farmanguinhos, FIOCRUZ Foundation, Rua Sizenando Nabuco 100, Rio de Janeiro 21041-250, RJ, Brazil (M.R.F.)
| | | | | |
Collapse
|
3
|
Lin Z, Zhou X, Yuan C, Fang Y, Zhou H, Wang Z, Dang J, Li G. Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism. Molecules 2024; 29:339. [PMID: 38257252 PMCID: PMC10820209 DOI: 10.3390/molecules29020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Dianthus superbus L. has been extensively studied for its potential medicinal properties in traditional Chinese medicine and is often consumed as a tea by traditional folk. It has the potential to be exploited in the treatment of inflammation, immunological disorders, and diabetic nephropathy. Based on previous studies, this study continued the separation of another subfraction of Dianthus superbus and established reversed-phase/reversed-phase and reversed-phase/hydrophilic (RPLC) two-dimensional (2D) high-performance liquid chromatography (HPLC) modes, quickly separating two C-glycosylflavones, among which 2″-O-rhamnosyllutonarin was a new compound and isomer with 6‴-O-rhamnosyllutonarin. This is the first study to investigate the effects of 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin on cellular glucose metabolism in vitro. First, molecular docking was used to examine the effects of 2″-O-rhamnosyllutonarin and 6″-O-rhamnosyllutonarin on AKT and AMPK; these two compounds exhibited relatively high activity. Following this, based on the HepG2 cell model of insulin resistance, it was proved that both of the 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin demonstrated substantial efficacy in ameliorating insulin resistance and were found to be non-toxic. Simultaneously, it is expected that the methods developed in this study will provide a basis for future studies concerning the separation and pharmacological effects of C-glycosyl flavonoids.
Collapse
Affiliation(s)
- Zikai Lin
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Xiaowei Zhou
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Chen Yuan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Yan Fang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Haozheng Zhou
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| |
Collapse
|
4
|
Wu Z, Zuo G, Lee SK, Kang SM, Lee SY, Noreen S, Lim SS. Screening and Evaluation of Active Compounds in Polyphenol Mixtures by a Novel AAPH Offline HPLC Method and Its Application. Foods 2023; 12:foods12061258. [PMID: 36981186 PMCID: PMC10048677 DOI: 10.3390/foods12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we developed a novel offline high-performance liquid chromatography (HPLC) method based on 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) radicals for antioxidant screening in 20 polyphenolic compounds and used the Trolox equivalent antioxidant capacity assay to evaluate their antioxidant activity. Compared to the existing offline HPLC methods based on 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), the offline HPLC method based on the AAPH radical is more sensitive. Additionally, we applied this method to Lepechinia meyenii (Walp.) Epling extract and screened out seven antioxidants, caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and n-butyl rosmarinate, which are known antioxidants. Therefore, this study provides new insights into the screening of antioxidants in natural extracts.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Guanglei Zuo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Translational Pharmacy, Jinhua Institute, Zhejiang University, Jinhua 321016, China
| | - Soo-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Sung-Mo Kang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Sang-Youn Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Saba Noreen
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Villa-Ruano N, Hernández-Silva N, Varela-Caselis JL, Alberto-Ramirez-Garcia S, Mosso-González C. Controlled Production of Carnosic Acid and Carnosol in Cell Suspensions of Lepechinia meyenii Treated with Different Elicitors and Biosynthetic Precursors. Chem Biodivers 2023; 20:e202200733. [PMID: 36562957 DOI: 10.1002/cbdv.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
Lepechinia meyenii is a medicinal plant specialized in the biosynthesis of different types of antioxidants including the diterpenes carnosic (CA) acid and carnosol (CS). Herein we present the results of plant tissue culture approaches performed in this medicinal plant with particular emphasis on the generation and evaluation of a cell suspension system for CA and CS production. The effect of sucrose concentration, temperature, pH, and UV-light exposure was explored. In addition, diverse concentrations of microbial elicitors (salicylic acid, pyocyanin, Glucanex, and chitin), simulators of abiotic elicitors (polyethylene glycol and NaCl), and biosynthetic precursors (mevalonolactone, geranylgeraniol, and miltiradiene/abietatriene) were evaluated on batch cultures for 20 days. Miltiradiene/abietatriene obtainment was achieved through a metabolic engineering approach using a recombinant strain of Saccharomyces cerevisiae. Our results suggested that the maximum accumulation (Accmax ) of CA and CS was mainly conferred to stimuli associated with oxidative stress such as UV-light exposure (Accmax , 6.2 mg L-1 ) polyethylene glycol (Accmax , 6.5 mg L-1 ) NaCl (Accmax , 5.9 mg L-1 ) which simulated drought and saline stress, respectively. Nevertheless the bacterial elicitor pyocyanin was also effective to increase the production of both diterpenes (Accmax , 6.4 mg L-1 ). Outstandingly, the incorporation of upstream biosynthetic precursors such as geranylgeraniol and miltiradiene/abietatriene, generated the best results with Accmax of 8.6 and 16.7 mg L-1 , respectively. Optimized batch cultures containing 100 mg L-1 geranylgeraniol, 50 mg L-1 miltiradiene/abietatriene (95 : 5 %) and 5 g L-1 polyethylene glycol treated with 6 min UV light pulse during 30 days resulted in Accmax of 26.7 mg L-1 for CA and 17.3 mg L-1 for CS on days 18-24. This strategy allowed to increase seven folds the amounts of CA and CS in comparison with batch cultures without elicitation (Accmax , 4.3 mg L-1 ).
Collapse
Affiliation(s)
- Nemesio Villa-Ruano
- CONACyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla. Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, México
| | - Néstor Hernández-Silva
- Universidad del Istmo Campus Tehuantepec. Ciudad Universitaria S/N, Barrio Santa Cruz, 4a. Sección Sto. Domingo Tehuantepec, CP 70760, Oaxaca, México
| | - Jenaro Leocadio Varela-Caselis
- Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla. Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, México
| | - Sergio Alberto-Ramirez-Garcia
- Universidad de la Sierra Sur, Guillermo Rojas Mijangos, Col. Ciudad Universitaria, CP 70800, Miahuatlán de Porfirio Díaz, Oaxaca, México
| | - Clemente Mosso-González
- CONACyT-Centro Regional de Investigación en Salud Pública (CRISP), 4a. Av. Nte. esquina 19, Norte, Centro, CP 30700, Tapachula, Chiapas, México
| |
Collapse
|
6
|
Optimization of Synthesis of Silver Nanoparticles Conjugated with Lepechinia meyenii (Salvia) Using Plackett-Burman Design and Response Surface Methodology—Preliminary Antibacterial Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present investigation, an ethanolic fraction (EF) of Lepechinia meyenii (salvia) was prepared and fractionated by gradient column chromatography, and the main secondary metabolites present in the EF were identified by HPLC-MS. Silver nanoparticles (AgNPs) were synthesized and conjugated with the EF of Lepechinia meyenii (salvia). The AgNPs synthesis was optimized using Plackett-Burman design and response surface methodology (RSM), considering the following independent variables: stirring speed, synthesis pH, synthesis time, synthesis temperature and EF volume. The AgNPs synthesized under the optimized conditions were characterized by UV visible spectroscopy (UV-VIS), Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). The antibacterial activity of the AgNPs against Staphylococcus aureus (ATCC® 25923) was evaluated. The following flavonoids were identified: rosmarinic acid, diosmin and hesperetin-7-O-rutinoside. The optimized conditions for the synthesis of nanoparticles were pH 9.45, temperature 49.8 °C, volume of ethanolic fraction 152.6 µL and a reaction time of 213.2 min. The obtained AgNPs exhibited an average size of 43.71 nm and a resonance plasmon of 410–420 nm. Using FT-IR spectroscopy, the disappearance of the peaks between 626.50 and 1379.54 cm−1 was evident with the AgNPs, which would indicate the participation of these functional groups in the synthesis and protection of the nanoparticles. A hydrodynamic size of 47.6 nm was obtained by DLS, while a size of 40–60 nm was determined by STEM. The synthesized AgNPs conjugated with the EF showed a higher antibacterial activity than the EF alone. These results demonstrate that the AgNPs synthesized under optimized conditions conjugated with the EF of the Lepechinia meyenii (salvia) presented an increased antibacterial activity.
Collapse
|
7
|
Balestri F, Moschini R, Mura U, Cappiello M, Del Corso A. In Search of Differential Inhibitors of Aldose Reductase. Biomolecules 2022; 12:biom12040485. [PMID: 35454074 PMCID: PMC9024650 DOI: 10.3390/biom12040485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Aldose reductase, classified within the aldo-keto reductase family as AKR1B1, is an NADPH dependent enzyme that catalyzes the reduction of hydrophilic as well as hydrophobic aldehydes. AKR1B1 is the first enzyme of the so-called polyol pathway that allows the conversion of glucose into sorbitol, which in turn is oxidized to fructose by sorbitol dehydrogenase. The activation of the polyol pathway in hyperglycemic conditions is generally accepted as the event that is responsible for a series of long-term complications of diabetes such as retinopathy, cataract, nephropathy and neuropathy. The role of AKR1B1 in the onset of diabetic complications has made this enzyme the target for the development of molecules capable of inhibiting its activity. Virtually all synthesized compounds have so far failed as drugs for the treatment of diabetic complications. This failure may be partly due to the ability of AKR1B1 to reduce alkenals and alkanals, produced in oxidative stress conditions, thus acting as a detoxifying agent. In recent years we have proposed an alternative approach to the inhibition of AKR1B1, suggesting the possibility of a differential inhibition of the enzyme through molecules able to preferentially inhibit the reduction of either hydrophilic or hydrophobic substrates. The rationale and examples of this new generation of aldose reductase differential inhibitors (ARDIs) are presented.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
- Correspondence:
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| |
Collapse
|