1
|
Malik K, Iftikhar A, Maqsood Q, Tariq MR, Ali SW. Cleaner horizons: Exploring advanced technologies for pollution remediation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00890. [PMID: 40255475 PMCID: PMC12008138 DOI: 10.1016/j.btre.2025.e00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 04/22/2025]
Abstract
Soil pollution causes many harmful effects by its contaminants or pollutants, which are known as soil pollutants. They are causing serious problems in plants as well as in humans. By entering into plants, harmful chemicals become part of the food chain. When humans consume contaminated food, it has harmful effects on human health. Pollutants are making soil unfit for living. Many techniques are being used for the remediation of soil pollution. Some are traditional techniques; some are innovative and effective as emerging science and technology are going on. In this review, we have discussed some significant methods, their aspects, and how they are playing their role in the remediation. Biological methods such as living organisms, chemical, and genetic manipulation are modern techniques that are being used for soil pollution remediation. Genetic manipulations sometimes change the enzyme processes, which enhance the whole activity by changing some of the proteins of organisms related to enzymes. Pollution remediation can be done by the process of bio-augmentation, which uses different types of strains of microbes for treatment. As there is an increase in the formation of OH compounds, advanced oxidation technologies are being introduced to treat them. Trace metals and heavy metals are also a big problem for soil pollution, which can be treated by phytoremediation techniques that use many different strategies. Nanoparticles are also being used for the treatment of compounds like nitrates, manganese, arsenic, etc. This review will guide you through the different technologies for soil pollution remediation.
Collapse
Affiliation(s)
- Khadija Malik
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Ashja Iftikhar
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Tariq
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Mandal RR, Bashir Z, Raj D. Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124199. [PMID: 39848176 DOI: 10.1016/j.jenvman.2025.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations. These include high costs, environmental impacts, and the potential for generating secondary pollutants, highlighting the need for sustainable alternatives. Phytoremediation, enhanced by microbial interactions, offers an eco-friendly solution to this issue. The unique physiological and biochemical traits of plants, combined with microbial metabolic capabilities, enable efficient uptake and detoxification of HMs. Microbial enzymes play a crucial role in these processes by breaking down complex compounds, enhancing HM bioavailability, and facilitating their conversion into less toxic forms. Synergistic interactions between root-associated microbes and plants further improves metal absorption and stabilization, boosting phytoremediation efficiency. However, challenges remain, including the limited bioavailability of contaminants and plant resilience in highly polluted environments. Recent advancements focus on improving microbial-assisted phytoremediation through mechanisms like bioavailability facilitation, phytoextraction, and phytostabilization. Genetic engineering facilitates the altering of genes that control plant immune responses and growth which improves the ability of plants to interact beneficially with microbes to thrive in HM rich environments while efficiently cleaning contaminated wastewater. This review examines these strategies and highlights future research directions to enhance wastewater remediation using phytoremediation technologies.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
3
|
Wu Y, Zhu J, Sun Y, Wang S, Wang J, Zhang X, Song J, Wang R, Chen C, Zou J. Effects of the co-exposure of microplastic/nanoplastic and heavy metal on plants: Using CiteSpace, meta-analysis, and machine learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117237. [PMID: 39447297 DOI: 10.1016/j.ecoenv.2024.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Micro/nanoplastics (MNPs) and heavy metals (HMs) coexist worldwide. Existing studies have reported different or even contradictory toxic effects of co-exposure to MNPs and HMs on plants, which may be related to various influencing factors. In this study, existing publications were searched and analyzed using CiteSpace, meta-analysis, and machine learning. CiteSpace analysis showed that this research field was still in the nascent stage, and hotspots in this field included accumulation, cadmium (Cd), growth, and combined toxicity. Meta-analysis revealed the differential association of seven influencing factors (MNP size, pollutant treatment duration, cultivation media, plant species, MNP type, HM concentration, and MNP concentration) and 8 physiological parameters receiving the most attention. Co-exposure of the two contaminants had stronger toxic effects than HM treatment alone, and phytotoxicity was generally enhanced with increasing concentrations and longer exposure durations, especially when using nanoparticles, hydroponic medium, dicotyledons producing stronger toxic effects than microplastics, soil-based medium, and monocotyledons. Dry and fresh weight analysis showed that co-exposure to MNPs and Cd resulted in significant phytotoxicity in all classifications. Concerning the MNP types, polyolefins partially attenuated plant toxicity, but both modified polystyrene (PS) and biodegradable polymers exacerbated joint phytotoxicity. Finally, machine learning was used to fit and predict plant HM concentrations, showing five classifications with an accuracy over 80 %, implying that the polynomial regression model could be used to predict HM content in plants under complex pollution conditions. Overall, this study identifies current knowledge gaps and provides guidance for future research.
Collapse
Affiliation(s)
- Yuyang Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yue Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China; State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Siyuan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jun Wang
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China
| | - Xuanyu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiayi Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ruoxi Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Chunyuan Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
4
|
Chhikara S, Singh Y, Long S, Minocha R, Musante C, White JC, Dhankher OP. Overexpression of bacterial γ-glutamylcysteine synthetase increases toxic metal(loid)s tolerance and accumulation in Crambe abyssinica. PLANT CELL REPORTS 2024; 43:270. [PMID: 39443376 DOI: 10.1007/s00299-024-03351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Transgenic Crambe abyssinica lines overexpressing γ-ECS significantly enhance tolerance to and accumulation of toxic metal(loid)s, improving phytoremediation potential and offering an effective solution for contaminated soil management. Phytoremediation is an attractive environmental-friendly technology to remove metal(loid)s from contaminated soils and water. However, tolerance to toxic metals in plants is a critical limiting factor. Transgenic Crambe abyssinica lines were developed that overexpress the bacterial γ-glutamylcysteine synthetase (γ-ECS) gene to increase the levels of non-protein thiol peptides such as γ-glutamylcysteine (γ-EC), glutathione (GSH), and phytochelatins (PCs) that mediate metal(loid)s detoxification. The present study investigated the effect of γ-ECS overexpression on the tolerance to and accumulation of toxic As, Cd, Pb, Hg, and Cr supplied individually or as a mixture of metals. Compared to wild-type plants, γ-ECS transgenics (γ-ECS1-8 and γ-ECS16-5) exhibited a significantly higher capacity to tolerate and accumulate these elements in aboveground tissues, i.e., 76-154% As, 200-254% Cd, 37-48% Hg, 26-69% Pb, and 39-46% Cr, when supplied individually. This is attributable to enhanced production of GSH (82-159% and 75-87%) and PC2 (27-33% and 37-65%) as compared to WT plants under AsV and Cd exposure, respectively. The levels of Cys and γ-EC were also increased by 56-67% and 450-794% in the overexpression lines compared to WT plants under non-stress conditions, respectively. This likely enhanced the metabolic pathway associated with GSH biosynthesis, leading to the ultimate synthesis of PCs, which detoxify toxic metal(loid)s through chelation. These findings demonstrate that γ-ECS overexpressing Crambe lines can be used for the enhanced phytoremediation of toxic metals and metalloids from contaminated soils.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Wang J, Zhu H, Huang R, Xu J, Huang L, Yang J, Chen W. CIP1, a CIPK23-interacting transporter, is implicated in Cd tolerance and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134276. [PMID: 38640682 DOI: 10.1016/j.jhazmat.2024.134276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Ru'nan Huang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China.
| | - Weiwei Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
7
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
8
|
Webster LJ, Villa-Gomez D, Brown R, Clarke W, Schenk PM. A synthetic biology approach for the treatment of pollutants with microalgae. Front Bioeng Biotechnol 2024; 12:1379301. [PMID: 38646010 PMCID: PMC11032018 DOI: 10.3389/fbioe.2024.1379301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The increase in global population and industrial development has led to a significant release of organic and inorganic pollutants into water streams, threatening human health and ecosystems. Microalgae, encompassing eukaryotic protists and prokaryotic cyanobacteria, have emerged as a sustainable and cost-effective solution for removing these pollutants and mitigating carbon emissions. Various microalgae species, such as C. vulgaris, P. tricornutum, N. oceanica, A. platensis, and C. reinhardtii, have demonstrated their ability to eliminate heavy metals, salinity, plastics, and pesticides. Synthetic biology holds the potential to enhance microalgae-based technologies by broadening the scope of treatment targets and improving pollutant removal rates. This review provides an overview of the recent advances in the synthetic biology of microalgae, focusing on genetic engineering tools to facilitate the removal of inorganic (heavy metals and salinity) and organic (pesticides and plastics) compounds. The development of these tools is crucial for enhancing pollutant removal mechanisms through gene expression manipulation, DNA introduction into cells, and the generation of mutants with altered phenotypes. Additionally, the review discusses the principles of synthetic biology tools, emphasizing the significance of genetic engineering in targeting specific metabolic pathways and creating phenotypic changes. It also explores the use of precise engineering tools, such as CRISPR/Cas9 and TALENs, to adapt genetic engineering to various microalgae species. The review concludes that there is much potential for synthetic biology based approaches for pollutant removal using microalgae, but there is a need for expansion of the tools involved, including the development of universal cloning toolkits for the efficient and rapid assembly of mutants and transgenic expression strains, and the need for adaptation of genetic engineering tools to a wider range of microalgae species.
Collapse
Affiliation(s)
- Luke J. Webster
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Denys Villa-Gomez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Reuben Brown
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - William Clarke
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
- Algae Biotechnology, Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Houida S, Yakkou L, Kaya LO, Bilen S, Raouane M, El Harti A, Amghar S. Plant growth-promoting bacteria isolated from earthworms enhance spinach growth and its phytoremediation potential in metal-contaminated soils. Int Microbiol 2024; 27:545-558. [PMID: 37516695 DOI: 10.1007/s10123-023-00402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
The aim of this study was to evaluate the impact of metal-tolerant plant growth-promoting bacteria (PGPB) isolated from the chloragogenous tissue of Aporrectodea molleri, which represents a unique habitat. Our objectives were to investigate their effects on the growth of Spinacia oleracea under heavy metal stress and assess their potential for enhancing phytoremediation capabilities. The experiment was conducted in an alkaline soil contaminated with 7 mg kg-1 of cadmium, 100 mg kg-1 of nickel, 150 mg kg-1 of copper, 300 mg kg-1 of Zinc, and mg kg-1 of 600 Manganese. The results showed that heavy metal stress considerably diminished root (42.8%) and shoot length (60.1%), biomass (80%), chlorophyll content (41%), soil alkaline (45%), and acid (51%) phosphatases (42%) and urease (42%). However, soil inoculation with bacterial isolates remarkably improved plant growth. Soil bioaugmentation increased spinach growth (up to 74.5% for root length, up to 106.3% for shoot length, and up to 5.5 folds for fresh biomass) while significantly increasing soil enzyme activity and NPK content. Multivariate data analysis indicated that soil inoculation with Bacillus circulans TC7 promoted plant growth while limiting metal bioaccumulation, whereas Pseudomonas sp. TC33 and Bacillus subtilis TC34 increased metal bioaccumulation in spinach tissues while minimizing their toxicity. Our study confirms that earthworms are a reservoir of multi-beneficial bacteria that can effectively improve phytoremediation efficiency and mitigate the toxic effects of heavy metals on plant growth. Further studies are needed to investigate the long-term effects and feasibility of using these isolates as a consortium in field applications.
Collapse
Affiliation(s)
- Sofia Houida
- Research Team Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco.
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey.
| | - Lamia Yakkou
- Research Team Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| | - Leyla Okyay Kaya
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| | - Serdar Bilen
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| | - Mohamed Raouane
- Research Team Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| | - Souad Amghar
- Research Team Lumbricidae, Improving Soil Productivity and Environment (LAPSE), Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| |
Collapse
|
10
|
Bartucca ML, Cerri M, Forni C. Phytoremediation of Pollutants: Applicability and Future Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:2462. [PMID: 37447023 DOI: 10.3390/plants12132462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Environmental pollution is a global issue since it is spreading worldwide, affecting entire ecosystems [...].
Collapse
Affiliation(s)
- Maria Luce Bartucca
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Martina Cerri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Cinzia Forni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
11
|
He T, Xu ZM, Wang JF, Zhang K, Wang FP, Li WL, Tian P, Li QS. Inoculation of Escherichia coli enriched the key functional bacteria that intensified cadmium accumulation by halophyte Suaeda salsa in saline soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131922. [PMID: 37379599 DOI: 10.1016/j.jhazmat.2023.131922] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The enhancement of cadmium (Cd) extraction by plants from contaminated soils associated with phosphate-solubilizing bacteria (PSB) has been widely reported, but the underlying mechanism remains scarcely, especially in Cd-contaminated saline soils. In this study, a green fluorescent protein-labeled PSB, the strain E. coli-10527, was observed to be abundantly colonized in the rhizosphere soils and roots of halophyte Suaeda salsa after inoculation in saline soil pot tests. Cd extraction by plants was significantly promoted. The enhanced Cd phytoextraction by E. coli-10527 was not solely dependent on bacterial efficient colonization, but more significantly, relied on the remodeling of rhizosphere microbiota, as confirmed by soil sterilization test. Taxonomic distribution and co-occurrence network analyses suggested that E. coli-10527 strengthened the interactive effects of keystone taxa in the rhizosphere soils, and enriched the key functional bacteria that involved in plant growth promotion and soil Cd mobilization. Seven enriched rhizospheric taxa (Phyllobacterium, Bacillus, Streptomyces mirabilis, Pseudomonas mirabilis, Rhodospirillale, Clostridium, and Agrobacterium) were obtained from 213 isolated strains, and were verified to produce phytohormone and promote soil Cd mobilization. E. coli-10527 and those enriched taxa could assemble as a simplified synthetic community to strengthen Cd phytoextraction through their synergistic interactions. Therefore, the specific microbiota in rhizosphere soils enriched by the inoculated PSB were also the key to intensifying Cd phytoextraction.
Collapse
Affiliation(s)
- Tao He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management Institute of Environmental and Soil Sciences, Institute of Ecoenvironmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ke Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wan-Li Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ping Tian
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Sánchez-Castro I, Molina L, Prieto-Fernández MÁ, Segura A. Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon 2023; 9:e16692. [PMID: 37484356 PMCID: PMC10360604 DOI: 10.1016/j.heliyon.2023.e16692] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Most worldwide policy frameworks, including the United Nations Sustainable Development Goals, highlight soil as a key non-renewable natural resource which should be rigorously preserved to achieve long-term global sustainability. Although some soil is naturally enriched with heavy metals (HMs), a series of anthropogenic activities are known to contribute to their redistribution, which may entail potentially harmful environmental and/or human health effects if certain concentrations are exceeded. If this occurs, the implementation of rehabilitation strategies is highly recommended. Although there are many publications dealing with the elimination of HMs using different methodologies, most of those works have been done in laboratories and there are not many comprehensive reviews about the results obtained under field conditions. Throughout this review, we examine the different methodologies that have been used in real scenarios and, based on representative case studies, we present the evolution and outcomes of the remediation strategies applied in real soil-contamination events where legacies of past metal mining activities or mine spills have posed a serious threat for soil conservation. So far, the best efficiencies at field-scale have been reported when using combined strategies such as physical containment and assisted-phytoremediation. We have also introduced the emerging problem of the heavy metal contamination of agricultural soils and the different strategies implemented to tackle this problem. Although remediation techniques used in real scenarios have not changed much in the last decades, there are also encouraging facts for the advances in this field. Thus, a growing number of mining companies publicise in their webpages their soil remediation strategies and efforts; moreover, the number of scientific publications about innovative highly-efficient and environmental-friendly methods is also increasing. In any case, better cooperation between scientists and other soil-related stakeholders is still required to improve remediation performance.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Lázaro Molina
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Ángeles Prieto-Fernández
- Misión Biolóxica de Galicia (CSIC), Sede Santiago de Compostela, Avda de Vigo S/n. Campus Vida, 15706, Santiago de Compostela, Spain
| | - Ana Segura
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
13
|
Hemalatha P, Abda EM, Shah S, Venkatesa Prabhu S, Jayakumar M, Karmegam N, Kim W, Govarthanan M. Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117382. [PMID: 36753844 DOI: 10.1016/j.jenvman.2023.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Currently, international development requires innovative solutions to address imminent challenges like climate change, unsustainable food system, food waste, energy crisis, and environmental degradation. All the same, addressing these concerns with conventional technologies is time-consuming, causes harmful environmental impacts, and is not cost-effective. Thus, biotechnological tools become imperative for enhancing food and energy resilience through eco-friendly bio-based products by valorisation of plant and food waste to meet the goals of circular bioeconomy in conjunction with Sustainable Developmental Goals (SDGs). Genome editing can be accomplished using a revolutionary DNA modification tool, CRISPR-Cas9, through its uncomplicated guided mechanism, with great efficiency in various organisms targeting different traits. This review's main objective is to examine how the CRISPR-Cas system, which has positive features, could improve the bioeconomy by reducing food loss and waste with all-inclusive food supply chain both at on-farm and off-farm level; utilising food loss and waste by genome edited microorganisms through food valorisation; efficient microbial conversion of low-cost substrates as biofuel; valorisation of agro-industrial wastes; mitigating greenhouse gas emissions through forestry plantation crops; and protecting the ecosystem and environment. Finally, the ethical implications and regulatory issues that are related to CRISPR-Cas edited products in the international markets have also been taken into consideration.
Collapse
Affiliation(s)
- Palanivel Hemalatha
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Kings Road, Koronivia, P. O. Box 1544, Nausori, Republic of Fiji
| | - S Venkatesa Prabhu
- Department of Chemical Engineering, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - M Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
14
|
Al-Khayri JM, Banadka A, Rashmi R, Nagella P, Alessa FM, Almaghasla MI. Cadmium toxicity in medicinal plants: An overview of the tolerance strategies, biotechnological and omics approaches to alleviate metal stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1047410. [PMID: 36733604 PMCID: PMC9887195 DOI: 10.3389/fpls.2022.1047410] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Medicinal plants, an important source of herbal medicine, are gaining more demand with the growing human needs in recent times. However, these medicinal plants have been recognized as one of the possible sources of heavy metal toxicity in humans as these medicinal plants are exposed to cadmium-rich soil and water because of extensive industrial and agricultural operations. Cadmium (Cd) is an extremely hazardous metal that has a deleterious impact on plant development and productivity. These plants uptake Cd by symplastic, apoplastic, or via specialized transporters such as HMA, MTPs, NRAMP, ZIP, and ZRT-IRT-like proteins. Cd exerts its effect by producing reactive oxygen species (ROS) and interfere with a range of metabolic and physiological pathways. Studies have shown that it has detrimental effects on various plant growth stages like germination, vegetative and reproductive stages by analyzing the anatomical, morphological and biochemical changes (changes in photosynthetic machinery and membrane permeability). Also, plants respond to Cd toxicity by using various enzymatic and non-enzymatic antioxidant systems. Furthermore, the ROS generated due to the heavy metal stress alters the genes that are actively involved in signal transduction. Thus, the biosynthetic pathway of the important secondary metabolite is altered thereby affecting the synthesis of secondary metabolites either by enhancing or suppressing the metabolite production. The present review discusses the abundance of Cd and its incorporation, accumulation and translocation by plants, phytotoxic implications, and morphological, physiological, biochemical and molecular responses of medicinal plants to Cd toxicity. It explains the Cd detoxification mechanisms exhibited by the medicinal plants and further discusses the omics and biotechnological strategies such as genetic engineering and gene editing CRISPR- Cas 9 approach to ameliorate the Cd stress.
Collapse
Affiliation(s)
- Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - R Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Fatima M. Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mustafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
15
|
Rahman MU, Zulfiqar S, Raza MA, Ahmad N, Zhang B. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Cells 2022; 11:3590. [PMID: 36429019 PMCID: PMC9688763 DOI: 10.3390/cells11223590] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental abiotic stresses challenge food security by depressing crop yields often exceeding 50% of their annual production. Different methods, including conventional as well as genomic-assisted breeding, mutagenesis, and genetic engineering have been utilized to enhance stress resilience in several crop species. Plant breeding has been partly successful in developing crop varieties against abiotic stresses owning to the complex genetics of the traits as well as the narrow genetic base in the germplasm. Irrespective of the fact that genetic engineering can transfer gene(s) from any organism(s), transgenic crops have become controversial mainly due to the potential risk of transgene-outcrossing. Consequently, the cultivation of transgenic crops is banned in certain countries, particularly in European countries. In this scenario, the discovery of the CRISPR tool provides a platform for producing transgene-free genetically edited plants-similar to the mutagenized crops that are not extensively regulated such as genetically modified organisms (GMOs). Thus, the genome-edited plants without a transgene would likely go into the field without any restriction. Here, we focused on the deployment of CRISPR for the successful development of abiotic stress-tolerant crop plants for sustaining crop productivity under changing environments.
Collapse
Affiliation(s)
- Mehboob-ur Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Ahmad Raza
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Niaz Ahmad
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
16
|
Wang Y, Narayanan M, Shi X, Chen X, Li Z, Natarajan D, Ma Y. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Front Microbiol 2022; 13:966226. [PMID: 36033871 PMCID: PMC9404692 DOI: 10.3389/fmicb.2022.966226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Heavy metal contamination in soils endangers humans and the biosphere by reducing agricultural yield and negatively impacting ecosystem health. In recent decades, this issue has been addressed and partially remedied through the use of “green technology,” which employs metal-tolerant plants to clean up polluted soils. Furthermore, the global climate change enhances the negative effects of climatic stressors (particularly drought, salinity, and extreme temperatures), thus reducing the growth and metal accumulation capacity of remediating plants. Plant growth-promoting bacteria (PGPB) have been widely introduced into plants to improve agricultural productivity or the efficiency of phytoremediation of metal-contaminated soils via various mechanisms, including nitrogen fixation, phosphate solubilization, phytohormone production, and biological control. The use of metal-tolerant plants, as well as PGPB inoculants, should hasten the process of moving this technology from the laboratory to the field. Hence, it is critical to understand how PGPB ameliorate environmental stress and metal toxicity while also inducing plant tolerance, as well as the mechanisms involved in such actions. This review attempts to compile the scientific evidence on this topic, with a special emphasis on the mechanism of PGPB involved in the metal bioremediation process [plant growth promotion and metal detoxification/(im)mobilization/bioaccumulation/transformation/translocation] and deciphering combined stress (metal and climatic stresses) tolerance.
Collapse
Affiliation(s)
- Yue Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma,
| |
Collapse
|
17
|
Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. BIOLOGY 2022; 11:biology11050676. [PMID: 35625404 PMCID: PMC9138774 DOI: 10.3390/biology11050676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The legume–rhizobium symbiosis is one of the most beneficial interactions with high importance in agriculture, as it delivers nitrogen to plants and soil, thereby enhancing plant growth. Currently, this symbiosis is increasingly being exploited in phytoremediation of metal contaminated soil to improve soil fertility and simultaneously metal extraction or stabilization. Rhizobia increase phytoremediation directly by nitrogen fixation, protection of plants from pathogens, and production of plant growth-promoting factors and phytohormones. Abstract With the increasing industrial activity of the growing human population, the accumulation of various contaminants in soil, including heavy metals, has increased rapidly. Heavy metals as non-biodegradable elements persist in the soil environment and may pollute crop plants, further accumulating in the human body causing serious conditions. Hence, phytoremediation of land contamination as an environmental restoration technology is desirable for both human health and broad-sense ecology. Legumes (Fabaceae), which play a special role in nitrogen cycling, are dominant plants in contaminated areas. Therefore, the use of legumes and associated nitrogen-fixing rhizobia to reduce the concentrations or toxic effects of contaminants in the soil is environmentally friendly and becomes a promising strategy for phytoremediation and phytostabilization. Rhizobia, which have such plant growth-promoting (PGP) features as phosphorus solubilization, phytohormone synthesis, siderophore release, production of beneficial compounds for plants, and most of all nitrogen fixation, may promote legume growth while diminishing metal toxicity. The aim of the present review is to provide a comprehensive description of the main effects of metal contaminants in nitrogen-fixing leguminous plants and the benefits of using the legume–rhizobium symbiosis with both wild-type and genetically modified plants and bacteria to enhance an efficient recovery of contaminated lands.
Collapse
|