1
|
Feki K, Tounsi S, Kamoun H, Al-Hashimi A, Brini F. Decoding the role of durum wheat ascorbate peroxidase TdAPX7B-2 in abiotic stress response. Funct Integr Genomics 2024; 24:223. [PMID: 39604585 DOI: 10.1007/s10142-024-01505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
APX proteins are H2O2-scavenging enzymes induced during oxidative stress. In the first part of this study, we provided an extensive knowledge on the APX family of Triticum durum, TdAPX and their related TdAPX-R, via the genome wide analysis. The outcomes showed that these proteins are clustered into four major subgroups. Furthermore, the exon-intron structure and the synteny analyses revealed that during evolution the genes TdAPX and TdAPX-R are relatively conserved. Besides, during their evolution, these genes underwent purifying selection pressure and were duplicated in segmental. In parallel, the analysis of the conserved motifs and the multiple sequence alignment demonstrated that the residues involved in the active sites, heme- and cations-binding are conserved only in TdAPX proteins. Following the RNA-seq data and the regulatory elements analyses, we focused in the second part of this study on the functional characterization of TdAPX7B-2. The qRT-PCR data showed the upregulation of TdAPX7B-2 essentially in leaves of durum wheat exposed to salt, cold, drought, metals and ABA treatments. The tolerance phenotype of the TdAPX7B-2-expressing Arabidopsis lines to salt, direct-induced oxidative stress and heavy metals was manifested by the development of root system, proline accumulation and induction of the antioxidant CAT, SOD and POD enzymes to maintain the non-toxic H2O2 levels. Likewise, the response to salt stress and direct-oxidative stress of the transgenic lines was accompanied mainly by the induction of AtNCED3, AtRD29A/B and AtERD1.
Collapse
Affiliation(s)
- Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia.
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
- University of Jandouba, Higher School of Agriculture of Kef (ESAK), Boulifa Campus, BP 7119, Kef, Tunisia
| | - Hanen Kamoun
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| |
Collapse
|
2
|
Shamloo-Dashtpagerdi R, Tanin MJ, Aliakbari M, Saini DK. Unveiling the role of the ERD15 gene in wheat's tolerance to combined drought and salinity stress: a meta-analysis of QTL and RNA-Seq data. PHYSIOLOGIA PLANTARUM 2024; 176:e14570. [PMID: 39382027 DOI: 10.1111/ppl.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
The coexistence of drought and salinity stresses in field conditions significantly hinders wheat (Triticum aestivum L.) productivity. Understanding the molecular mechanisms governing response and tolerance to these stresses is crucial for developing resilient wheat varieties. Our research, employing a combination of meta-QTL and meta-RNA-Seq transcriptome analyses, has uncovered the genome functional landscape of wheat in response to drought and salinity. We identified 118 meta-QTLs (MQTLs) distributed across all 21 wheat chromosomes, with ten designated as the most promising. Additionally, we found 690 meta-differentially expressed genes (mDEGs) shared between drought and salinity stress. Notably, our findings highlight the Early Responsive to Dehydration 15 (ERD15) gene, located in one of the most promising MQTLs, as a key gene in the shared gene network of drought and salinity stress. ERD15, differentially expressed between contrasting wheat genotypes under combined stress conditions, significantly regulates water relations, photosynthetic activity, antioxidant activity, and ion homeostasis. These findings not only provide valuable insights into the molecular genetic mechanisms underlying combined stress tolerance in wheat but also hold the potential to contribute significantly to the development of stress-resilient wheat varieties.
Collapse
Affiliation(s)
| | - Mohammad Jafar Tanin
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, USA
- Department of Plant Breeding and Genetics, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Kumari A, Gupta AK, Sharma S, Jadon VS, Sharma V, Chun SC, Sivanesan I. Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1528. [PMID: 38891334 PMCID: PMC11174413 DOI: 10.3390/plants13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In addition, they are known to boost the capacity of antioxidant systems, thereby contributing to the tolerance of plants to oxidative stress. This review study attempts to present the overview of the role of nanoparticles in plant growth and development, especially emphasizing their role as antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles and plant signaling pathways, highlighting their influence on gene expression and stress-responsive mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant resilience, are discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Ashish Kumar Gupta
- ICAR—National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Shivika Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Vikash S. Jadon
- School of Biosciences, Swami Rama Himalayan University, JollyGrant, Dehradun 248016, Uttarakhand, India;
| | - Vikas Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Se Chul Chun
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
4
|
Poggi GM, Corneti S, Aloisi I. The Quest for Reliable Drought Stress Screening in Tetraploid Wheat ( Triticum turgidum spp.) Seedlings: Why MDA Quantification after Treatment with 10% PEG-6000 Falls Short. Life (Basel) 2024; 14:517. [PMID: 38672787 PMCID: PMC11051145 DOI: 10.3390/life14040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Drought stress poses significant productivity challenges to wheat. Several studies suggest that lower malondialdehyde (MDA) content may be a promising trait to identify drought-tolerant wheat genotypes. However, the optimal polyethylene glycol (PEG-6000) concentration for screening seedlings for drought tolerance based on MDA quantification is not clear. The aim of this study was to verify whether a 10% (w/v) PEG-6000 concentration-induced water stress was reliable for discriminating between twenty-two drought-susceptible and drought-tolerant tetraploid wheat (Triticum turgidum spp. durum, turanicum, and carthlicum) accessions based on MDA quantification. To do so, its correlation with morpho-physiological traits, notoriously related to seedling drought tolerance, i.e., Seedling Vigour Index and Seedling Water Content, was evaluated. Results showed that MDA content was not a reliable biomarker for drought tolerance, as it did not correlate significantly with the aforementioned morpho-physiological traits, which showed, on the contrary, high positive correlation with each other. Combining our study with the cited literature, it clearly emerges that different wheat genotypes have different "water stress thresholds", highlighting that using a 10% PEG-6000 concentration for screening wheat seedlings for drought tolerance based on MDA quantification is not reliable. Given the conflicting results in the literature, this study provides important insights for selecting appropriate methods for evaluating wheat seedling drought tolerance.
Collapse
Affiliation(s)
| | | | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (G.M.P.); (S.C.)
| |
Collapse
|
5
|
Haydar MS, Ali S, Mandal P, Roy D, Roy MN, Kundu S, Kundu S, Choudhuri C. Fe-Mn nanocomposites doped graphene quantum dots alleviate salt stress of Triticum aestivum through osmolyte accumulation and antioxidant defense. Sci Rep 2023; 13:11040. [PMID: 37419934 PMCID: PMC10328949 DOI: 10.1038/s41598-023-38268-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
An investigation was carried out to evaluate the effect of graphene quantum dots (GQD) and its nanocomposites on germination, growth, biochemical, histological, and major ROS detoxifying antioxidant enzyme activities involved in salinity stress tolerance of wheat. Seedlings were grown on nutrient-free sand and treatment solutions were applied through solid matrix priming and by foliar spray. Control seedlings under salinity stress exhibited a reduction in photosynthetic pigment, sugar content, growth, increased electrolyte leakage, and lipid peroxidation, whereas iron-manganese nanocomposites doped GQD (FM_GQD) treated seedlings were well adapted and performed better compared to control. Enzymatic antioxidants like catalase, peroxidase, glutathione reductase and NADPH oxidase were noted to increase by 40.5, 103.2, 130.19, and 141.23% respectively by application of FM_GQD. Histological evidence confirmed a lower extent of lipid peroxidation and safeguarding the plasma membrane integrity through osmolyte accumulation and redox homeostasis. All of these interactive phenomena lead to an increment in wheat seedling growth by 28.06% through FM_GQD application. These findings highlight that micronutrient like iron, manganese doped GQD can be a promising nano-fertilizer for plant growth and this article will serve as a reference as it is the very first report regarding the ameliorative role of GQD in salt stress mitigation.
Collapse
Affiliation(s)
- Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
- Department of Chemistry, Alipurduar University, Alipurduar, West Bengal, 734013, India
| | - Sourav Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Sudipta Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Chandrani Choudhuri
- Department of Botany, North Bengal St. Xavier's College, University of North Bengal, Rajganj, Jalpaiguri, West Bengal, 735134, India.
| |
Collapse
|
6
|
Broccanello C, Bellin D, DalCorso G, Furini A, Taranto F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1101271. [PMID: 36778704 PMCID: PMC9911883 DOI: 10.3389/fpls.2023.1101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.
Collapse
Affiliation(s)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
7
|
Licaj I, Di Meo MC, Fiorillo A, Samperna S, Marra M, Rocco M. Comparative Analysis of the Response to Polyethylene Glycol-Simulated Drought Stress in Roots from Seedlings of "Modern" and "Ancient" Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:428. [PMID: 36771510 PMCID: PMC9921267 DOI: 10.3390/plants12030428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is widely cultivated in the Mediterranean, where it is the basis for the production of high added-value food derivatives such as pasta. In the next few years, the detrimental effects of global climate change will represent a serious challenge to crop yields. For durum wheat, the threat of climate change is worsened by the fact that cultivation relies on a few genetically uniform, elite varieties, better suited to intensive cultivation than "traditional" ones but less resistant to environmental stress. Hence, the renewed interest in "ancient" traditional varieties are expected to be more tolerant to environmental stress as a source of genetic resources to be exploited for the selection of useful agronomic traits such as drought tolerance. The aim of this study was to perform a comparative analysis of the effect and response of roots from the seedlings of two durum wheat cultivars: Svevo, a widely cultivated elite variety, and Saragolla, a traditional variety appreciated for its organoleptic characteristics, to Polyethylene glycol-simulated drought stress. The effect of water stress on root growth was analyzed and related to biochemical data such as hydrogen peroxide production, electrolyte leakage, membrane lipid peroxidation, proline synthesis, as well as to molecular data such as qRT-PCR analysis of drought responsive genes and proteomic analysis of changes in the protein repertoire of roots from the two cultivars.
Collapse
Affiliation(s)
- Ilva Licaj
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Maria Chiara Di Meo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Anna Fiorillo
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Samperna
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
8
|
Shah YA, Saeed F, Afzaal M, Ahmad A, Hussain M, Ateeq H, Khan MH. Biochemical & nutritional properties of wheat bulgur: a review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yasir Abbas Shah
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Aftab Ahmad
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Huda Ateeq
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Mujahid Hassan Khan
- Department of Food Sciences Government College University Faisalabad Pakistan
| |
Collapse
|
9
|
Soccio M, Marangi M, Laus MN. Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat ( Triticum durum Desf.). FRONTIERS IN PLANT SCIENCE 2022; 13:934523. [PMID: 35832233 PMCID: PMC9272005 DOI: 10.3389/fpls.2022.934523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
Glyoxalase I (GLYI) catalyzes the rate-limiting step of the glyoxalase pathway that, in the presence of GSH, detoxifies the cytotoxic molecule methylglyoxal (MG) into the non-toxic D-lactate. In plants, MG levels rise under various abiotic stresses, so GLYI may play a crucial role in providing stress tolerance. In this study, a comprehensive genome database analysis was performed in durum wheat (Triticum durum Desf.), identifying 27 candidate GLYI genes (TdGLYI). However, further analyses of phylogenetic relationships and conserved GLYI binding sites indicated that only nine genes encode for putative functionally active TdGLYI enzymes, whose distribution was predicted in three different subcellular compartments, namely cytoplasm, plastids and mitochondria. Expression profile by qRT-PCR analysis revealed that most of the putative active TdGLYI genes were up-regulated by salt and osmotic stress in roots and shoots from 4-day-old seedlings, although a different behavior was observed between the two types of stress and tissue. Accordingly, in the same tissues, hyperosmotic stress induced an increase (up to about 40%) of both GLYI activity and MG content as well as a decrease of GSH (up to about -60%) and an increase of GSSG content (up to about 7-fold) with a consequent strong decrease of the GSH/GSSG ratio (up to about -95%). Interestingly, in this study, we reported the first demonstration of the existence of GLYI activity in highly purified mitochondrial fraction. In particular, GLYI activity was measured in mitochondria from durum wheat (DWM), showing hyperbolic kinetics with Km and Vmax values equal to 92 ± 0.2 μM and 0.519 ± 0.004 μmol min-1 mg-1 of proteins, respectively. DWM-GLYI resulted inhibited in a competitive manner by GSH (Ki = 6.5 ± 0.7 mM), activated by Zn2+ and increased, up to about 35 and 55%, under salt and osmotic stress, respectively. In the whole, this study provides basis about the physiological significance of GLYI in durum wheat, by highlighting the role of this enzyme in the early response of seedlings to hyperosmotic stress. Finally, our results strongly suggest the existence of a complete mitochondrial GLYI pathway in durum wheat actively involved in MG detoxification under hyperosmotic stress.
Collapse
Affiliation(s)
- Mario Soccio
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| | - Marianna Marangi
- Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maura N. Laus
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|