1
|
Aecyo P, Costa L, Jacobina UP, Harand W, Leal IR, Souza G, Pedrosa-Harand A. Integrative evidence on the hybridization between Cenostigma microphyllum and C. pyramidale (Leguminosae) in the Caatinga dry forest. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39680475 DOI: 10.1111/plb.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Interspecific hybridization plays an important role in plant evolution, contributing to taxonomic uncertainty through intermediate phenotypes or the emergence of novel traits. The characterization of hybridization is important to elucidate systematic relationships and its role in the diversification of lineages. The genus Cenostigma comprises neotropical legume trees with phylogenetic inconsistencies, and individuals showing intermediate morphology between sympatric species, suggesting natural hybridization. We tested this hypothesis by investigating two endemic species from the Caatinga dry forest in northeast Brazil (C. microphyllum and C. pyramidale) using molecular markers (nuclear and plastid SSRs), geometric morphometrics, non-targeted metabolomics, and ecological analyses. We detected a high plastidial genetic structure among populations, not related to species boundaries but to their geographic distribution. The geometric morphometric analysis showed a clustering of pure individuals of both species with hybrids in an intermediate position, demonstrating the hybridization of these species in Caatinga. Nuclear DNA and metabolite diversity supported the separation of the two species into three clusters, with a subdivision of C. pyramidale in populations from the north (Pernambuco) and south (Bahia). Metabolomics revealed a fourth group formed mostly by hybrids. Later generation hybrids were detected as intermediate morphological forms, and gene flow was assumed as asymmetric among species and populations, being higher from C. pyramidale to C. microphyllum in populations from Bahia State. Ecological data indicated niche overlap. Hence, interspecific gene flow occurs among Cenostigma tree species, contributing to the evolution of the dry forest. Given the karyotypic and genomic similarity among species, as well as molecular and ecological evidence, we infer that the hybrids are fertile, allowing introgression and contributing to systematic complexity in Cenostigma. Hybridization did not significantly increase chemodiversity in terms of novel compounds but differentiated hybrids from parental species. In summary, we highlight the importance of multiple evidence, particularly genetic, morphological, and metabolomic traits, in the identification of hybrids and its evolutionary impact in natural environments.
Collapse
Affiliation(s)
- P Aecyo
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - L Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - U P Jacobina
- Laboratório de Sistemática Integrativa Molecular e Microssistemas de Análises, Universidade Federal de Alagoas, Arapiraca, Alagoas, Brazil
| | - W Harand
- Laboratório de Biodiversidade, Instituto Nacional do Semiárido, Ministério da Ciência, Tecnologia e Inovações, Campina Grande, Paraíba, Brazil
| | - I R Leal
- Laboratory of Plant-Animal Interaction, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - G Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - A Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Szczepański S, Łabiszak B, Lasek M, Wachowiak W. Hybridization has localized effect on genetic variation in closely related pine species. BMC PLANT BIOLOGY 2024; 24:1007. [PMID: 39455923 PMCID: PMC11520059 DOI: 10.1186/s12870-024-05732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Hybridization is a known phenomenon in nature but its genetic impact on populations of parental species remains less understood. We investigated the evolutionary consequences of the interspecific gene flow in several contact zones of closely related pine species. Using a set of genetic markers from both nuclear and organellar genomes, we analyzed four hybrid zones (384 individuals) and a large panel of reference allopatric populations of parental taxa (2104 individuals from 96 stands). RESULTS We observed reduced genetic diversity in maternally transmitted mitochondrial genomes of pure pine species and hybrids from contact zones compared to reference allopatric populations. The distribution of mtDNA haplotypes followed geographic rather than species boundaries. Additionally, no new haplotypes emerged in the contact zones, instead these zones contained the most common local variants. However, species diverged significantly at nuclear genomes and populations in contact zones exhibited similar or higher genetic diversity compared to the reference stands. There were no signs of admixture in any allopatric population, while clear admixture was evident in the contact zones, indicating that hybridization has a geographically localized effect on the genetic variation of the analyzed pine species. CONCLUSIONS Our results suggest that hybrid zones act as sinks rather than melting pots of genetic diversity. Hybridization influences sympatric populations but is confined to contact zones. The spectrum of parental species ancestry in hybrids reflects the old evolutionary history of the sympatric populations. These findings also imply that introgression may play a crucial role in the adaptation of hybrids to specific environments.
Collapse
Affiliation(s)
- Sebastian Szczepański
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Bartosz Łabiszak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Martyna Lasek
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Witold Wachowiak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
3
|
Bradican JP, Tomasello S, Vollmer J, Hörandl E. Converging forms: an examination of sub-Arctic, circumarctic, and Central Asian Ranunculus auricomus agg. populations. FRONTIERS IN PLANT SCIENCE 2024; 15:1415059. [PMID: 38952845 PMCID: PMC11215153 DOI: 10.3389/fpls.2024.1415059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024]
Abstract
Introduction Phenotypic complexity in species complexes and recently radiated lineages has resulted in a diversity of forms that have historically been classified into separate taxa. Increasingly, with the proliferation of high-throughput sequencing methods, additional layers of complexity have been recognized, such as frequent hybridization and reticulation, which may call into question the previous morphological groupings of closely related organisms. Methods We investigated Northern European, Asian, and Beringian populations of Ranunculus auricomus agg. with phylogenomic analysis of 736 genes and 27,586 SNPs in order to deduce the interrelatedness and hybrid origin of this phenotypically and taxonomically complicated group from Europe characterized by a history of hybridization, polyploidy, apomixis, and recent radiation. The ploidy levels and the reproductive mode of the Northern European populations were assessed via flow cytometric seed screening. In addition, in order to examine the phenotypic plasticity of the dwarf forms previously described as species and summarized as the Ranunculus monophyllus group, we conducted climate chamber experiments under cold (northern) and warm (temperate) conditions. Results The Northern European populations are tetra- to hexaploid and propagate primarily through apomixis. The complex is characterized by highly reticulate relationships. Genetic differentiation of the main clusters has occurred between the above-mentioned geographical regions. We find evidence for the hybrid origin of the taxa in these areas with differing genomic contributions from the geographically nearest European sexual progenitor species. Furthermore, polyphyly in the taxa of the R. monophyllus group is supported. Experiments show low lability in the traits associated with the R. monophyllus group. Discussion We conclude that multiple adaptations of hybrids to colder climates and shorter vegetation periods have shaped the phenotypes of the R. monophyllus group, and we suggest a formal classification as nothotaxa within the R. auricomus group.
Collapse
Affiliation(s)
- John Paul Bradican
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Georg-August University School of Sciences (GAUSS), University of Göttingen, Göttingen, Germany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Judith Vollmer
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Touchette L, Godbout J, Lamothe M, Porth I, Isabel N. A cryptic syngameon within Betula shrubs revealed: Implications for conservation in changing subarctic environments. Evol Appl 2024; 17:e13689. [PMID: 38633131 PMCID: PMC11022622 DOI: 10.1111/eva.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.
Collapse
Affiliation(s)
- Lyne Touchette
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Julie Godbout
- Ministère des Ressources naturelles et des Forêts, Direction de la recherche forestièreQuébecQuébecCanada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
| | - Ilga Porth
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| |
Collapse
|
5
|
Moran BM, Payne CY, Powell DL, Iverson ENK, Donny AE, Banerjee SM, Langdon QK, Gunn TR, Rodriguez-Soto RA, Madero A, Baczenas JJ, Kleczko KM, Liu F, Matney R, Singhal K, Leib RD, Hernandez-Perez O, Corbett-Detig R, Frydman J, Gifford C, Schartl M, Havird JC, Schumer M. A lethal mitonuclear incompatibility in complex I of natural hybrids. Nature 2024; 626:119-127. [PMID: 38200310 PMCID: PMC10830419 DOI: 10.1038/s41586-023-06895-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
The evolution of reproductive barriers is the first step in the formation of new species and can help us understand the diversification of life on Earth. These reproductive barriers often take the form of hybrid incompatibilities, in which alleles derived from two different species no longer interact properly in hybrids1-3. Theory predicts that hybrid incompatibilities may be more likely to arise at rapidly evolving genes4-6 and that incompatibilities involving multiple genes should be common7,8, but there has been sparse empirical data to evaluate these predictions. Here we describe a mitonuclear incompatibility involving three genes whose protein products are in physical contact within respiratory complex I of naturally hybridizing swordtail fish species. Individuals homozygous for mismatched protein combinations do not complete embryonic development or die as juveniles, whereas those heterozygous for the incompatibility have reduced complex I function and unbalanced representation of parental alleles in the mitochondrial proteome. We find that the effects of different genetic interactions on survival are non-additive, highlighting subtle complexity in the genetic architecture of hybrid incompatibilities. Finally, we document the evolutionary history of the genes involved, showing signals of accelerated evolution and evidence that an incompatibility has been transferred between species via hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford University, Stanford, CA, USA.
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico.
| | - Cheyenne Y Payne
- Department of Biology, Stanford University, Stanford, CA, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico
| | - Daniel L Powell
- Department of Biology, Stanford University, Stanford, CA, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico
| | - Erik N K Iverson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | | | - Quinn K Langdon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Theresa R Gunn
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Angel Madero
- Department of Biology, Stanford University, Stanford, CA, USA
| | - John J Baczenas
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Fang Liu
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Rowan Matney
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Kratika Singhal
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Ryan D Leib
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Osvaldo Hernandez-Perez
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico
| | - Russell Corbett-Detig
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Casey Gifford
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, CA, USA.
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
6
|
Meier JI, McGee MD, Marques DA, Mwaiko S, Kishe M, Wandera S, Neumann D, Mrosso H, Chapman LJ, Chapman CA, Kaufman L, Taabu-Munyaho A, Wagner CE, Bruggmann R, Excoffier L, Seehausen O. Cycles of fusion and fission enabled rapid parallel adaptive radiations in African cichlids. Science 2023; 381:eade2833. [PMID: 37769075 DOI: 10.1126/science.ade2833] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Although some lineages of animals and plants have made impressive adaptive radiations when provided with ecological opportunity, the propensities to radiate vary profoundly among lineages for unknown reasons. In Africa's Lake Victoria region, one cichlid lineage radiated in every lake, with the largest radiation taking place in a lake less than 16,000 years old. We show that all of its ecological guilds evolved in situ. Cycles of lineage fusion through admixture and lineage fission through speciation characterize the history of the radiation. It was jump-started when several swamp-dwelling refugial populations, each of which were of older hybrid descent, met in the newly forming lake, where they fused into a single population, resuspending old admixture variation. Each population contributed a different set of ancient alleles from which a new adaptive radiation assembled in record time, involving additional fusion-fission cycles. We argue that repeated fusion-fission cycles in the history of a lineage make adaptive radiation fast and predictable.
Collapse
Affiliation(s)
- Joana I Meier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- Department of Zoology, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Matthew D McGee
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - David A Marques
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- Natural History Museum Basel, Basel, Switzerland
| | - Salome Mwaiko
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Mary Kishe
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Sylvester Wandera
- National Fisheries Resources Research Institute (NAFIRRI), Jinja, Uganda
| | - Dirk Neumann
- Leipniz Institute for Biodiversity Change, Hamburg, Germany
| | - Hilary Mrosso
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Lauren J Chapman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Colin A Chapman
- Wilson Center, Washington, DC, USA
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Les Kaufman
- Boston University Marine Program, Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
7
|
Whittemore AT, Miller RE. Dynamic properties of the pinyon pine syngameon. THE NEW PHYTOLOGIST 2023; 237:1943-1945. [PMID: 36652627 DOI: 10.1111/nph.18707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Alan T Whittemore
- Herbarium, Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
| | - Richard E Miller
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
- Flower Diversity Institute, Arvada, CO, 80003, USA
| |
Collapse
|
8
|
Buck R, Ortega-Del Vecchyo D, Gehring C, Michelson R, Flores-Rentería D, Klein B, Whipple AV, Flores-Rentería L. Sequential hybridization may have facilitated ecological transitions in the Southwestern pinyon pine syngameon. THE NEW PHYTOLOGIST 2023; 237:2435-2449. [PMID: 36251538 DOI: 10.1111/nph.18543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multispecies interbreeding networks, or syngameons, have been increasingly reported in natural systems. However, the formation, structure, and maintenance of syngameons have received little attention. Through gene flow, syngameons can increase genetic diversity, facilitate the colonization of new environments, and contribute to hybrid speciation. In this study, we evaluated the history, patterns, and consequences of hybridization in a pinyon pine syngameon using morphological and genomic data to assess genetic structure, demographic history, and geographic and climatic data to determine niche differentiation. We demonstrated that Pinus edulis, a dominant species in the Southwestern US and a barometer of climate change, is a core participant in the syngameon, involved in the formation of two drought-adapted hybrid lineages including the parapatric and taxonomically controversial fallax-type. We found that species remain morphologically and genetically distinct at range cores, maintaining species boundaries while undergoing extensive gene flow in areas of sympatry at range peripheries. Our study shows that sequential hybridization may have caused relatively rapid speciation and facilitated the colonization of different niches, resulting in the rapid formation of two new lineages. Participation in the syngameon may allow adaptive traits to be introgressed across species barriers and provide the changes needed to survive future climate scenarios.
Collapse
Affiliation(s)
- Ryan Buck
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Querétaro, 76230, Mexico
| | - Catherine Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Rhett Michelson
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, NV, 89146, USA
| | - Dulce Flores-Rentería
- CONACYT-CINVESTAV Unidad Saltillo, Grupo de Sustentabilidad de los Recursos Naturales y Energía, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, Mexico
| | - Barbara Klein
- Diné College, School of Science, Technology, Engineering and Mathematics, Tsaile, AZ, 86556, USA
| | - Amy V Whipple
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | |
Collapse
|
9
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
10
|
Perez-Roman E, Borredá C, Tadeo FR, Talon M. Transcriptome analysis of the pulp of citrus fruitlets suggests that domestication enhanced growth processes and reduced chemical defenses increasing palatability. FRONTIERS IN PLANT SCIENCE 2022; 13:982683. [PMID: 36119632 PMCID: PMC9478336 DOI: 10.3389/fpls.2022.982683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
To identify key traits brought about by citrus domestication, we have analyzed the transcriptomes of the pulp of developing fruitlets of inedible wild Ichang papeda (Citrus ichangensis), acidic Sun Chu Sha Kat mandarin (C. reticulata) and three palatable segregants of a cross between commercial Clementine (C. x clementina) and W. Murcott (C. x reticulata) mandarins, two pummelo/mandarin admixtures of worldwide distribution. RNA-seq comparison between the wild citrus and the ancestral sour mandarin identified 7267 differentially expressed genes, out of which 2342 were mapped to 117 KEGG pathways. From the remaining genes, a set of 2832 genes was functionally annotated and grouped into 45 user-defined categories. The data suggest that domestication promoted fundamental growth processes to the detriment of the production of chemical defenses, namely, alkaloids, terpenoids, phenylpropanoids, flavonoids, glucosinolates and cyanogenic glucosides. In the papeda, the generation of energy to support a more active secondary metabolism appears to be dependent upon upregulation of glycolysis, fatty acid degradation, Calvin cycle, oxidative phosphorylation, and ATP-citrate lyase and GABA pathways. In the acidic mandarin, downregulation of cytosolic citrate degradation was concomitant with vacuolar citrate accumulation. These changes affected nitrogen and carbon allocation in both species leading to major differences in organoleptic properties since the reduction of unpleasant secondary metabolites increases palatability while acidity reduces acceptability. The comparison between the segregants and the acidic mandarin identified 357 transcripts characterized by the occurrence in the three segregants of additional downregulation of secondary metabolites and basic structural cell wall components. The segregants also showed upregulation of genes involved in the synthesis of methyl anthranilate and furaneol, key substances of pleasant fruity aroma and flavor, and of sugar transporters relevant for sugar accumulation. Transcriptome and qPCR analysis in developing and ripe fruit of a set of genes previously associated with citric acid accumulation, demonstrated that lower acidity is linked to downregulation of these regulatory genes in the segregants. The results suggest that the transition of inedible papeda to sour mandarin implicated drastic gene expression reprograming of pivotal pathways of the primary and secondary metabolism, while palatable mandarins evolved through progressive refining of palatability properties, especially acidity.
Collapse
|