1
|
An W, Wang G, Dou J, Zhang Y, Yang Q, He Y, Tang Z, Yu J. Protective mechanisms of exogenous melatonin on chlorophyll metabolism and photosynthesis in tomato seedlings under heat stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1519950. [PMID: 39967814 PMCID: PMC11833508 DOI: 10.3389/fpls.2025.1519950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Elevated temperatures severely affect plant growth, reducing yield and quality. Melatonin (MT), a plant biomolecule, is known to enhance stress tolerance, but its role in heat resistance and underlying mechanisms require further exploration. This study investigates MT's regulatory effects on chlorophyll metabolism and photosynthesis in tomato seedlings under high-temperature stress (40°C). Tomato seedlings treated with 100 μmol MT showed improved physiological and photosynthetic performance under heat stress. MT application increased osmolytes (proline and soluble sugar), enhanced antioxidant enzyme activities [catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX)], and reduced oxidative damage markers (H2O2, O2 -, malondialdehyde, and conductivity). Photosynthetic parameters, including key enzyme activities [sedoheptulose-1,7-bisphosphatase (SBPase), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH)], photochemical efficiency [Fv/Fm and Y(II)], and photochemical quenching (Qp), were significantly improved, restoring the OJIP curve and enhancing photosynthesis. MT also regulated chlorophyll metabolism by promoting synthesis [increasing chlorophyll a and b, 5-aminolevulinic acid (ALA), Mg-protoporphyrin (Mg Proto), and protochlorophyllide (Pchlide) levels] and upregulating synthesis genes (SlHEMA1, SlPORB, SlPORC, and SlCHLI) while inhibiting degradation genes (SlCLH1, SlCLH2, SlPAO, SlPPH, and SlRCCR). These findings demonstrate that MT enhances tomato heat tolerance by protecting chlorophyll metabolism and photosynthesis, offering a theoretical basis for improving crop resilience to heat stress.
Collapse
Affiliation(s)
- Wangwang An
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yonghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Qing Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yongmei He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, China
| |
Collapse
|
2
|
Elkelish A, Abu-Elsaoud AM, Alqahtani AM, El-Nablaway M, Al Harthi N, Al Harthi N, Lakoh S, Saied EM, Labib M. Unlocking the pharmacological potential of Brennnesselwurzel (Urtica dioica L.): an in-depth study on multifaceted biological activities. BMC Complement Med Ther 2024; 24:413. [PMID: 39696148 DOI: 10.1186/s12906-024-04709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Brennnesselwurzel (Urtica dioica L.) is recognized for its diverse pharmacological properties. With a range of chemical constituents, such as vitamins, minerals, phenolic compounds, fibers, and amino acids, Brennnesselwurzel (BWE) has a long history of traditional medicinal use in Europe and Asia. The correlation between a plant's metabolite composition and its activity can vary depending on considerations such as geographic location, environmental conditions, and genetic variations. In the present study, we explore the phytochemical profile and biological activity of the 70% acetone extract of the BWE plant. The chemical profile of the BWE extract was explored using several techniques, including amino acid analyzer, HPLC, GC-MS, and other colorimetric analysis. The antioxidant activity of the BWE extract was assessed by evaluating the total antioxidant, free radical scavenging activity (DPPH, ABTS, H2O2), and metal chelating scavenging activity (FRAP, CUPRAC, metal chelating). Furthermore, we assessed the antimicrobial and antiproliferation activities of the BWE extract against 29 microbial strains and 15 cell lines, respectively. Our phytochemical analyzes revealed that the BWE extract has a unique profile of metabolites including amino acids, flavonoids, phenolics, volatile oils, lipids, and vitamins. The BWE extract showed a total antioxidant capacity of 30.94 ± 1.58 mg GAE/g, together with potential free radical scavenging activity towards ABTS (IC50 = 153.51 ± 3.97 µg/ml), DPPH (IC50 = 195.75 ± 5.91 µg/ml), and H2O2 (IC50 = 230.67 ± 5.98 µg/ml). Although the BWE extract showed no significant antifungal activity, our findings revealed that the BWE extract possesses substantial antibacterial activity against Staphylococcus epidermidi, Streptococcus mutants, Enterococcus faecalis, Micrococcus sp., Klebsiella pneumonia and Porphyromonas gingivalis. Furthermore, the BWE extract demonstrated potential antiproliferative activity toward a panel of cancer cell lines with a high selectivity index. Among the cells examined, the BWE extract exhibited significant cytotoxic activity toward HCT-116, A-549, MDA-MB-231 cells with IC50 of 15.11, 15.32, 15.79 µg/mL, respectively, while it possessed no significant cytotoxic activity towards WI-38 cells (IC50 119.62 µg/mL). Taken together, our findings reveal that BWE extract possesses a wide spectrum of biological activities, including antioxidant, antibacterial, and antitumor activities, and could be considered for further research to explore its potential as a natural plant-based supplement for human diseases.
Collapse
Affiliation(s)
- Amr Elkelish
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 1690950, 11623, Riyadh, Saudi Arabia
| | - Abdelghafar M Abu-Elsaoud
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 1690950, 11623, Riyadh, Saudi Arabia
| | - Alaa M Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, DiriyahRiyadh, Saudi Arabia
| | - Norah Al Harthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Najwa Al Harthi
- Department of General Nursing, College of Nursing, Taif University, Taif, Saudi Arabia
| | - Sulaiman Lakoh
- Department of Internal Medicine, Faculty of Clinical Sciences & Dentistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone.
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
- Institute for Chemistry, Humboldt Universität Zu Berlin, 12489, Berlin, Germany
| | - Mai Labib
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Cairo, 3725005, Egypt
| |
Collapse
|
3
|
Yasmeen H, Rasheed R, Ashraf MA, Zafar S, Ali S. Allantoin regulated oxidative defense, secondary metabolism and ions homeostasis in maize ( Zea mays L.) under heat stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1719-1739. [PMID: 39506991 PMCID: PMC11534965 DOI: 10.1007/s12298-024-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Understanding how maize responds to temperature stress is crucial for improving its resilience and productivity under changing climate conditions. Previous studies have shown that exogenous allantoin (ALA) regulates various physiological processes in plants under cadmium and salinity stress. The existing body of literature provides limited insight into the specific mechanisms that govern the impact of ALA on the physiological and biochemical responses of maize plants under heat stress. This study aims to investigate the role of ALA in regulating oxidative defense, secondary metabolism, and ion homeostasis in maize under heat stress, with the ultimate goal of improving maize resilience and productivity. The current investigation displayed visible depression in growth, chlorophyll content, and nutrient uptake in maize cultivars (tolerant cv. Pearl and sensitive cv. Pak-afgoi) under heat stress. Heat stress raised MDA and H2O2 levels in plants, indicating hampered ROS detoxification that might have impeded nutrient acquisition in plants more profoundly in heat-sensitive cv. Pak afgoi. ALA (150 and 300 mg L-1) promoted plant heat stress tolerance. ALA (300 mg L-1) increased enzymatic antioxidant activities and antioxidant molecule buildup, which diminished cell ROS levels. ALA increased osmolyte accumulation, raised chlorophyll and nutrient uptake, and mitigated oxidative damage in maize under heat stress. After 72 h of recovery from heat stress, ALA significantly enhanced biomass, photosynthetic pigments, ROS detoxification, and nutrient uptake while minimizing oxidative damage, aiding rapid plant recovery from heat stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01519-5.
Collapse
Affiliation(s)
- Humaira Yasmeen
- Department of Botany, Government College University Faisalabad, Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Campus, Jhang Road, Faisalabad, 38000 Pakistan
- Department of Plant Biotechnology, College of Life Science, Korea University, Seoul, South Korea
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000 Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| |
Collapse
|
4
|
Elkelish A, Alhudhaibi AM, Hossain AS, Haouala F, Alharbi BM, El-Banna MF, Rizk A, Badji A, AlJwaizea NI, Sayed AAS. Alleviating chromium-induced oxidative stress in Vigna radiata through exogenous trehalose application: insights into growth, photosynthetic efficiency, mineral nutrient uptake, and reactive oxygen species scavenging enzyme activity enhancement. BMC PLANT BIOLOGY 2024; 24:460. [PMID: 38797833 PMCID: PMC11129419 DOI: 10.1186/s12870-024-05152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.
Collapse
Affiliation(s)
- Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abm Sharif Hossain
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Faouzi Haouala
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Rizk
- Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Studies, Makerere University, P.O. Box 7062, Kampala, Uganda.
- Makerere University Regional Centre for Crop Improvement, Makerere University, Kampala, 7062, Uganda.
| | - Nada Ibrahim AlJwaizea
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
5
|
Qian Z, Lu L, Zihan W, Qianyue B, Chungang Z, Shuheng Z, Jiali P, Jiaxin Y, Shuang Z, Jian W. Gamma-aminobutyric acid (GABA) improves salinity stress tolerance in soybean seedlings by modulating their mineral nutrition, osmolyte contents, and ascorbate-glutathione cycle. BMC PLANT BIOLOGY 2024; 24:365. [PMID: 38706002 PMCID: PMC11071273 DOI: 10.1186/s12870-024-05023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.
Collapse
Affiliation(s)
- Zhao Qian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Liu Lu
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wei Zihan
- School of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bai Qianyue
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhao Chungang
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhang Shuheng
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Pan Jiali
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Yu Jiaxin
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Zhang Shuang
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Wei Jian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
6
|
Li X, Zhang W, Niu D, Liu X. Effects of abiotic stress on chlorophyll metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112030. [PMID: 38346561 DOI: 10.1016/j.plantsci.2024.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Chlorophyll, an essential pigment in the photosynthetic machinery of plants, plays a pivotal role in the absorption of light energy and its subsequent transfer to reaction centers. Given that the global production of chlorophyll reaches billions of tons annually, a comprehensive understanding of its biosynthetic pathways and regulatory mechanisms is important. The metabolic pathways governing chlorophyll biosynthesis and catabolism are complex, encompassing a series of interconnected reactions mediated by a spectrum of enzymes. Environmental fluctuations, particularly abiotic stressors such as drought, extreme temperature variations, and excessive light exposure, can significantly perturb these processes. Such disruptions in chlorophyll metabolism have profound implications for plant growth and development. This review delves into the core aspects of chlorophyll metabolism, encompassing both biosynthetic and degradative pathways. It elucidates key genes and enzymes instrumental in these processes and underscores the impact of abiotic stress on chlorophyll metabolism. Furthermore, the review aims to deepen the understanding of the interplay between chlorophyll metabolic dynamics and stress responses, thereby shedding light on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Ji J, Zhang J, Wang X, Song W, Ma B, Wang R, Li T, Wang G, Guan C, Gao X. The alleviation of salt stress on rice through increasing photosynthetic capacity, maintaining redox homeostasis and regulating soil enzyme activities by Enterobacter sp. JIV1 assisted with putrescine. Microbiol Res 2024; 280:127590. [PMID: 38142517 DOI: 10.1016/j.micres.2023.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The detrimental impact of soil salinization on crop productivity and agricultural economy has garnered significant attention. A rhizosphere bacterium with favorable salt tolerance and plant growth-promoting (PGP) functions was isolated in this work. The bacterium was identified as Enterobacter through 16 S rDNA sequencing analysis and designated as Enterobacter sp. JIV1. Interestingly, the presence of putrescine (Put), which had been shown to contribute in reducing abiotic stress damage to plants, significantly promoted strain JIV1 to generate 1-aminocyclopropane-1-carboxylic (ACC) deaminase, dissolve phosphorus and secrete indole-3-acetic acid (IAA). However, the synergy of plant growth promoting rhizobacteria (PGPR) and Put in improving plant salt resistance has not been extensively studied. In this study, strain JIV1 and exogenous Put effectively mitigated the inhibitory impact of salt stress simulated by 200 mM NaCl on rice (Oryza sativa L.) growth. The chlorophyll accumulation, photosynthetic efficiency and antioxidant capacity of rice were also significantly strengthened. Notably, the combined application of strain JIV1 and Put outperformed individual treatments. Moreover, the co-addition of strain JIV1 and Put increased soil protease and urease activities by 451.97% and 51.70% compared to that of salt treatment group. In general, Put-assisted PGPR JIV1 provides a new perspective on alleviating the salt-induced negative impacts on plants.
Collapse
Affiliation(s)
- Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xinya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenju Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Baoying Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Runzhong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiange Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoping Gao
- Fuzhou Planning Design Research Institute, Fuzhou 350108, China.
| |
Collapse
|
8
|
Alabdallah NM, Alluqmani SM, Almarri HM, AL-Zahrani AA. Physical, chemical, and biological routes of synthetic titanium dioxide nanoparticles and their crucial role in temperature stress tolerance in plants. Heliyon 2024; 10:e26537. [PMID: 38420474 PMCID: PMC10900808 DOI: 10.1016/j.heliyon.2024.e26537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Nanotechnology is attracting significant attention worldwide due to its applicability across various sectors. Titanium dioxide nanoparticles (TiO2NPs) are among the key nanoparticles (NPs) that have gained extensive practical use and can be synthesized through a wide range of physical, chemical, and green approaches. However, TiO2NPs have attracted a significant deal of interest due to the increasing demand for enhancing the endurance to abiotic stresses such as temperature stress. In this article, we discuss the effects of temperature stresses such as low (4 °C) and high temperatures (35 °C) on TiO2NPs. Due to climate change, low and high temperature stress impair plant growth and development. However, there are still many aspects of how plants respond to low and high temperature stress and how they influence plant growth under TiO2NPs treatments which are poorly understood. TiO2NPs can be utilized efficiently for plant growth and development, particularly under temperature stress, however the response varies according to type, size, shape, dose, exposure time, metal species, and other variables. It has been demonstrated that TiO2NPs are effective at enhancing the photosynthetic and antioxidant systems of plants under temperature stress. This analysis also identifies key knowledge gaps and possible future perspectives for the reliable application of TiO2NPs to plants under abiotic stress.
Collapse
Affiliation(s)
- Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, City Dammam, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Saleh M. Alluqmani
- Department of Physics. Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hana Mohammed Almarri
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Asla A. AL-Zahrani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Hong E, Xia X, Ji W, Li T, Xu X, Chen J, Chen X, Zhu X. Effects of High Temperature Stress on the Physiological and Biochemical Characteristics of Paeonia ostii. Int J Mol Sci 2023; 24:11180. [PMID: 37446356 DOI: 10.3390/ijms241311180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
In order to explore the effects of high temperature stress on the physiological characteristics of Paeonia ostii, the Paeonia ostii were subjected to 25 °C, 35 °C, 38 °C, and 40 °C for 7 days. Meanwhile, the physiological indicators of oxidative stress (hydrogen peroxide, H2O2; malondialdehyde, MDA; relative electrical conductivity, REC), antioxidant enzyme activity (superoxide dismutase, SOD; ascorbate peroxidase, APX; catalase, CAT; peroxidase, POD), photosynthetic pigment content (chlorophyll a, Chla; chlorophyll b, Chlb), photosynthetic characteristics (net photosynthetic rate, Pn; intercellular CO2 concentration, Ci; stomatal conductance, Gs; transpiration rate, Tr), and osmoregulatory substances content (soluble protein, SP; soluble sugar, SS) were determined. The results showed that, with the increase in temperature and stress time, the H2O2 content, MDA content, REC value, CAT activity, and APX activity increased, while Chla content, Chlb content, SS content, and SP content decreased. With the extension of stress time, the SOD activity, POD activity, and Tr value of each high temperature stress group first increased and then decreased; Ci first decreased, then increased, and then decreased; meanwhile, Pn and Gs showed an overall downward trend. PLS-DA (partial least squares discriminant analysis) was used to analyze the changes in physiological and biochemical indexes of peony leaves under 40 °C stress for different days. SOD was found to be the biggest factor affecting the changes in physiological and biochemical indexes of peony leaves treated with different days of stress.
Collapse
Affiliation(s)
- Erman Hong
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xuanze Xia
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Wen Ji
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Tianyao Li
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xianyi Xu
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Jingran Chen
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xia Chen
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| |
Collapse
|
10
|
Liu H, Chen R, Li H, Lin J, Wang Y, Han M, Wang T, Wang H, Chen Q, Chen F, Chu P, Liang C, Ren C, Zhang Y, Yang F, Sheng Y, Wei J, Wu X, Yu G. Genome-wide identification and expression analysis of SlRR genes in response to abiotic stress in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:322-333. [PMID: 36457231 DOI: 10.1111/plb.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The cytokinin two-component signal transduction system (TCS) is involved in many biological processes, including hormone signal transduction and plant growth regulation. Although cytokinin TCS has been well characterized in Arabidopsis thaliana, its role in tomato remains elusive. In this study, we characterized the diversity and function of response regulator (RR) genes, a critical component of TCS, in tomato. In total, we identified 31 RR genes in the tomato genome. These SlRR genes were classified into three subgroups (type-A, type-B and type-C). Various stress-responsive cis-elements were present in the tomato RR gene promoters. Their expression responses under pesticide treatment were evaluated by transcriptome analysis. Their expression under heat, cold, ABA, salinity and NaHCO3 treatments was further investigated by qRT-PCR and complemented with the available transcription data under these treatments. Specifically, SlRR13 expression was significantly upregulated under salinity, drought, cold and pesticide stress and was downregulated under ABA treatment. SlRR23 expression was induced under salt treatment, while the transcription level of SlRR1 was increased under cold and decreased under salt stress. We also found that GATA transcription factors played a significant role in the regulation of SlRR genes. Based on our results, tomato SlRR genes are involved in responses to abiotic stress in tomato and could be implemented in molecular breeding approaches to increase resistance of tomato to environmental stresses.
Collapse
Affiliation(s)
- H Liu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - R Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Li
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - J Lin
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - M Han
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - T Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Q Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - F Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - P Chu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - C Liang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - C Ren
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Zhang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - F Yang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Sheng
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - J Wei
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - X Wu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - G Yu
- Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
11
|
Liu XD, Zeng YY, Zhang XY, Tian XQ, Hasan MM, Yao GQ, Fang XW. Polyamines inhibit abscisic acid-induced stomatal closure by scavenging hydrogen peroxide. PHYSIOLOGIA PLANTARUM 2023; 175:e13903. [PMID: 37002824 DOI: 10.1111/ppl.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Stomatal closure is regulated by plant hormones and some small molecules to reduce water loss under stress conditions. Both abscisic acid (ABA) and polyamines alone induce stomatal closure; however, whether the physiological functions of ABA and polyamines are synergistic or antagonistic with respect to inducing stomatal closure is still unknown. Here, stomatal movement in response to ABA and/or polyamines was tested in Vicia faba and Arabidopsis thaliana, and the change in the signaling components under stomatal closure was analyzed. We found that both polyamines and ABA could induce stomatal closure through similar signaling components, including the synthesis of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) and the accumulation of Ca2+ . However, polyamines partially inhibited ABA-induced stomatal closure both in epidermal peels and in planta by activating antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), to eliminate the ABA-induced increase in H2 O2 . These results strongly indicate that polyamines inhibit abscisic acid-induced stomatal closure, suggesting that polyamines could be used as potential plant growth regulators to increase photosynthesis under mild drought stress.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuan-Yuan Zeng
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xia-Yi Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Ding F, Wang X, Li Z, Wang M. Jasmonate Positively Regulates Cold Tolerance by Promoting ABA Biosynthesis in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 12:60. [PMID: 36616188 PMCID: PMC9823970 DOI: 10.3390/plants12010060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
As a cold-sensitive species, tomato is frequently challenged by cold stress during vegetative and reproductive growth. Understanding how tomato responds to cold stress is of critical importance for sustainable tomato production. In this work, we demonstrate that jasmonate (JA) plays a crucial role in tomato response to cold stress by promoting abscisic acid (ABA) biosynthesis. It was observed that both JA and ABA levels were substantially increased under cold conditions, whereas the suppression of JA biosynthesis abated ABA accumulation. The ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE2 (NCED2) was subsequently found to be associated with JA-mediated ABA biosynthesis in tomato plants in response to cold stress. NCED2 was rapidly induced by exogenous MeJA and cold treatment. Silencing NCED2 led to a decrease in ABA accumulation that was concurrent with increased cold sensitivity. Moreover, blocking ABA biosynthesis using a chemical inhibitor impaired JA-induced cold tolerance in tomato. Furthermore, MYC2, a core component of the JA signaling pathway, promoted the transcription of NCED2, ABA accumulation and cold tolerance in tomato. Collectively, our results support that JA signaling promotes ABA biosynthesis to confer cold tolerance in tomato.
Collapse
|
13
|
Farag HAS, Ibrahim MFM, El-Yazied AA, El-Beltagi HS, El-Gawad HGA, Alqurashi M, Shalaby TA, Mansour AT, Alkhateeb AA, Farag R. Applied Selenium as a Powerful Antioxidant to Mitigate the Harmful Effects of Salinity Stress in Snap Bean Seedlings. AGRONOMY 2022; 12:3215. [DOI: 10.3390/agronomy12123215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Selenium (Se) plays several significant roles in regulating growth, development and plant responses to various abiotic stresses. However, its influence on sulfate transporters (SULTRS) and achieving the harmony with other salt-tolerance features is still limited in the previous literatures. This study elucidated the effect of Se supplementation (5, 10 and 20 µM) on salt-stressed (50 mM NaCl) snap bean seedlings. Generally, the results indicated that Se had dual effects on the salt stressed seedlings according to its concentration. At a low level (5 µM), plants demonstrated a significant improvement in shoot (13.8%) and root (22.8%) fresh weight, chlorophyll a (7.4%), chlorophyll b (14.7%), carotenoids (23.2%), leaf relative water content (RWC; 8.5%), proline (17.2%), total soluble sugars (34.3%), free amino acids (FAA; 18.4%), K (36.7%), Ca (33.4%), K/Na ratio (77.9%), superoxide dismutase (SOD; 18%), ascorbate peroxidase (APX;12.8%) and guaiacol peroxidase (G-POX; 27.1%) compared to the untreated plants. Meanwhile, most of these responses as well as sulfur (S), Se and catalase (CAT) were obviously decreased in parallel with increasing the applied Se up to 20 µM. The molecular study revealed that three membrane sulfate transporters (SULTR1, SULTR2 and SULTR 3) in the root and leaves and salinity responsive genes (SOS1, NHX1 and Osmotin) in leaves displayed different expression patterns under various Se treatments. Conclusively, Se at low doses can be beneficial in mitigating salinity-mediated damage and achieving the functioning homeostasis to tolerance features.
Collapse
|
14
|
Aljuaid BS, Ashour H. Exogenous γ-Aminobutyric Acid (GABA) Application Mitigates Salinity Stress in Maize Plants. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111860. [PMID: 36430995 PMCID: PMC9697566 DOI: 10.3390/life12111860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
The effect of γ-Aminobutyrate (GABA) on maize seedlings under saline stress conditions has not been well tested in previous literature. Maize seedlings were subjected to two saline water concentrations (50 and 100 mM NaCl), with distilled water as the control. Maize seedlings under saline and control conditions were sprayed with GABA at two concentrations (0.5 and 1 mM). Our results indicated that GABA application (1 mM) significantly enhanced plant growth parameters (fresh shoots and fresh roots by 80.43% and 47.13%, respectively) and leaf pigments (chlorophyll a, b, and total chlorophyll by 22.88%, 56.80%, and 36.21%, respectively) compared to untreated seedlings under the highest saline level. Additionally, under 100 mM NaCl, methylglyoxal (MG), malondialdehyde (MDA), and hydrogen peroxidase (H2O2) were reduced by 1 mM GABA application by 43.66%, 33.40%, and 35.98%, respectively. Moreover, maize seedlings that were treated with 1 mM GABA contained a lower Na content (22.04%) and a higher K content (60.06%), compared to the control under 100 mM NaCl. Peroxidase, catalase, ascorbate peroxidase, and superoxide dismutase activities were improved (24.62%, 15.98%, 62.13%, and 70.07%, respectively) by the highest GABA rate, under the highest stress level. Seedlings treated with GABA under saline conditions showed higher levels of expression of the potassium transporter protein (ZmHKT1) gene, and lower expression of the ZmSOS1 and ZmNHX1 genes, compared to untreated seedlings. In conclusion, GABA application as a foliar treatment could be a promising strategy to mitigate salinity stress in maize plants.
Collapse
Affiliation(s)
- Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (B.S.A.); (H.A.)
| | - Hatem Ashour
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (B.S.A.); (H.A.)
| |
Collapse
|
15
|
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, Noushahi HA, Wu W, Hu Q, Lu X, Huang G, Aamer M, Hassan MU, El Sabagh A. Versatile roles of polyamines in improving abiotic stress tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1003155. [PMID: 36311109 PMCID: PMC9606767 DOI: 10.3389/fpls.2022.1003155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants' optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs' accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants' stress tolerance under unfavorable cues.
Collapse
Affiliation(s)
- Jinhua Shao
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rabail Afzal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Haroon
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Weixiong Wu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Qiliang Hu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Xingda Lu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
| |
Collapse
|
16
|
Matsui A, Todaka D, Tanaka M, Mizunashi K, Takahashi S, Sunaoshi Y, Tsuboi Y, Ishida J, Bashir K, Kikuchi J, Kusano M, Kobayashi M, Kawaura K, Seki M. Ethanol induces heat tolerance in plants by stimulating unfolded protein response. PLANT MOLECULAR BIOLOGY 2022; 110:131-145. [PMID: 35729482 DOI: 10.1007/s11103-022-01291-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/26/2022] [Indexed: 05/24/2023]
Abstract
Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.
Collapse
Affiliation(s)
- Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Todaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kayoko Mizunashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuji Sunaoshi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Yuuri Tsuboi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Khurram Bashir
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
17
|
Aljuaid BS, Mukherjee S, Sayed AN, El-Gabry YAEG, Omar MMA, Mahmoud SF, Alsubeie MS, Darwish DBE, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Basahi MA, Hamada MMA. Folic Acid Reinforces Maize Tolerance to Sodic-Alkaline Stress through Modulation of Growth, Biochemical and Molecular Mechanisms. Life (Basel) 2022; 12:life12091327. [PMID: 36143364 PMCID: PMC9506096 DOI: 10.3390/life12091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism by which folic acid (FA) or its derivatives (folates) mediates plant tolerance to sodic-alkaline stress has not been clarified in previous literature. To apply sodic-alkaline stress, maize seedlings were irrigated with 50 mM of a combined solution (1:1) of sodic-alkaline salts (NaHCO3 and Na2CO3; pH 9.7). Maize seedlings under stressed and non-stressed conditions were sprayed with folic acid (FA) at 0 (distilled water as control), 0.05, 0.1, and 0.2 mM. Under sodic-alkaline stress, FA applied at 0.2 mM significantly improved shoot fresh weight (95%), chlorophyll (Chl a (41%), Chl b (57%), and total Chl (42%)), and carotenoids (27%) compared to the untreated plants, while root fresh weight was not affected compared to the untreated plants. This improvement was associated with a significant enhancement in the cell-membrane stability index (CMSI), relative water content (RWC), free amino acids (FAA), proline, soluble sugars, K, and Ca. In contrast, Na, Na/K ratio, H2O2, malondialdehyde (MDA), and methylglycoxal (MG) were significantly decreased. Moreover, seedlings treated with FA demonstrated significantly higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) compared to the untreated plants. The molecular studies using RT-qPCR demonstrated that FA treatments, specifically at 0.2 mM, enhanced the K+/Na+ selectivity and the performance of photosynthesis under alkaline-stress conditions. These responses were observed through up-regulation of the expression of the high-affinity potassium-transporter protein (ZmHKT1), the major core protein of photosystem II (D2-Protein), and the activity of the first enzyme of carbon fixation cycle in C4 plants (PEP-case) by 74, 248, and 225% over the untreated plants, respectively. Conversely, there was a significant down-regulation in the expression ZmSOS1 and ZmNHX1 by 48.2 and 27.8%, respectively, compared to the untreated plants.
Collapse
Affiliation(s)
- Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani 742213, India
- Correspondence: (S.M.); (M.M.A.H.)
| | - Amany N. Sayed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | | | - Mohamed M. A. Omar
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moodi Saham Alsubeie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
- Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Fahad Mohammed Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Mohammed A. Basahi
- College of Science and Arts Sajir, Shaqra University, P.O. Box 33, Shaqra 11961, Saudi Arabia
| | - Maha M. A. Hamada
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (S.M.); (M.M.A.H.)
| |
Collapse
|