1
|
Salehi H, Zhang L, Alp-Turgut FN, Arikan B, Elbasan F, Ozfidan-Konakci C, Balcı M, Zengin G, Yildiztugay E, Lucini L. The exogenous application of naringenin and rosmarinic acid modulates functional traits in Lepidium sativum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2761-2771. [PMID: 37994181 DOI: 10.1002/jsfa.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Phenolic modulators have attracted attention for their potential in shaping functional traits in plants. This work investigated the impact of naringenin (Nar) and rosmarinic acid (RA) on the functional properties of Lepidium sativum leaves and roots. RESULTS Untargeted metabolomics identified a diverse phenolic profile, including flavonoids, phenolic acids, low molecular weight phenolics, lignans, and stilbenes. Cluster, analysis of variance multiblock orthogonal partial least squares (AMOPLS), and orthogonal projection to latent structures discriminant analysis (OPLS-DA) multivariate analyses confirmed tissue-specific modulation of bioactive compounds. The tissue was the hierarchically most influential factor, explaining 27% of observed variability, while the treatment and their interaction were statistically insignificant. Thereafter, various in vitro assays were employed to assess antioxidant capacity, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, cupric ion reducing antioxidant capacity (CUPRAC), and ferric ion reducing antioxidant power (FRAP), metal chelating ability, and phosphomolybdenum (PMD) assays. Extracts were also tested for inhibitory effects on cholinesterase, amylase, glucosidase, and tyrosinase enzymes. RA application positively impacted antioxidant and enzyme inhibitory activities, holding valuable implications in shaping the health-promoting properties of L. sativum. CONCLUSION The untargeted metabolomics analysis showed a significant tissue-dependent modulation of bioactive compounds, determining no synergistic effect between applying phenolic compounds in combination. Specifically, the sole application of RA increased anthocyanins and hydroxyphenyl propanoic acid content on leaves, which was strictly related to enhancing the biological activities. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Melike Balcı
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gökhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
2
|
Wang L, Qian J, Li M, Zheng H, Yang X, Zheng M, Hsu YF. Arabidopsis PDE1 confers phosphate-deficiency tolerance in primary root growth. PLANT CELL REPORTS 2023; 43:8. [PMID: 38133662 DOI: 10.1007/s00299-023-03120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE PDE1 acts as a mediator of primary root growth in response to Pi deficiency. Phosphorus is commonly considered as a limiting nutrient for plant growth, which is mainly due to the immobility and uneven distribution of phosphate (Pi) in soils so that available Pi is not adequate in the rhizosphere. Although various mediators have been identified in Pi sensing and response, more details need to be uncovered in plant Pi-deficiency tolerance. Here, we isolated a mutant, termed pde1 (phosphate-deficiency sensitive 1), showing the hypersensitive Pi-deficiency-induced growth inhibition of primary roots. PDE1 encodes a hydroxyphenylpyruvate reductase with rare activity in vitro and repressed by Pi deficiency. Histochemical analysis displayed that Pi-deprived pde1 accumulated more Fe and reactive oxygen species (ROS) in primary roots than the wild type (WT). Addition of ferrozine, a Fe2+ chelator, or a ROS scavenger (e.g., thiourea and potassium iodide), alleviated the sensitivity of Pi-deficiency in pde1 primary roots. By contrast, pde1 showed reduced cotyledon expansion rate with treatment of H2O2 compared to WT. Taken together, these results suggested that PDE1 is responsible for regulating primary root growth in response to Pi deficiency, which is associated with ROS.
Collapse
Affiliation(s)
- Lingyu Wang
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jie Qian
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Meng Li
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Zheng
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiao Yang
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China.
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China.
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Cao X, Sui J, Li H, Yue W, Liu T, Hou D, Liang J, Wu Z. Enhancing heat stress tolerance in Lanzhou lily ( Lilium davidii var. unicolor) with Trichokonins isolated from Trichoderma longibrachiatum SMF2. FRONTIERS IN PLANT SCIENCE 2023; 14:1182977. [PMID: 37351207 PMCID: PMC10282843 DOI: 10.3389/fpls.2023.1182977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Lanzhou lily (Lilium davidii var. unicolor) is a renowned edible crop produced in China and relatively sensitive to high temperature (HT). Trichokonins (TKs) are antimicrobial peptaibols secreted from Trichoderma longibrachiatum strain SMF2. Here, we report that TKs application improves the thermotolerance of Lanzhou lily. The activity of the antioxidant enzyme system (SOD, CAT, and POD), the level of heat-resistance-associated phytohormones (ABA, SA, and JA), the relative water content (RWC), the content of chlorophyll (Chl), and the net photosynthetic rate (P n) were promoted by TKs treatment in Lanzhou lily plants subjected to heat stress (HS). TKs treatment also mitigated cell injury as shown by a lower accumulation of malondialdehyde (MDA) and relative electrolyte leakage (REL) under HS conditions. RNA-seq data analysis showed that more than 4.5 times differentially expressed genes (DEGs) responded to TKs treatment under HS compared to non-HS, and TKs treatment reduced protein folding and enhanced cellular repair function under HS conditions. The analyses of DEGs involved in hormone (ABA, SA and JA) synthesis and signaling pathways suggested that TKs might improve Lanzhou lily heat tolerance by promoting ABA synthesis and signal transduction. TKs highly induced DEGs of the HSF-HSP pathway under HS, in which HSFA2 accounted for most of the HSF family. Furthermore, TKs treatment resulted in the upregulation of heat-protective genes LzDREB2B, LzHsfA2a, LzMBF1c, LzHsp90, and LzHsp70 involved in HSF-HSP signal pathway after long-term HS. LzHsfA2a-1 likely plays a key role in acquisition of TKs-induced thermotolerance of Lanzhou lily as evidenced by the sustained response to HS, the enhanced response to TKs treatment under long-term HS, and the high sequence similarity to LlHsfA2a which is a key regulator for the improvement of heat tolerance in Lilium longiflorum. Our results reveal the underlying mechanisms of TKs-mediated thermotolerance in Lanzhou lily and highlight an attractive approach to protecting crop plants from damage caused by HS in a global warming future.
Collapse
Affiliation(s)
- Xing Cao
- Department of Environmental Art Design, College of Architecture, Yantai University, Yantai, China
| | - Juanjuan Sui
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Biology and Food Engineering College, Fuyang Normal University, Fuyang, China
| | - Haiyan Li
- Department of Environmental Art Design, College of Architecture, Yantai University, Yantai, China
| | - Wenxiu Yue
- Department of Environmental Art Design, College of Architecture, Yantai University, Yantai, China
| | - Tao Liu
- Department of Environmental Art Design, College of Architecture, Yantai University, Yantai, China
| | - Dong Hou
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Xie H, Zhang P, Jiang C, Wang Q, Guo Y, Zhang X, Huang T, Liu J, Li L, Li H, Wang H, Qin P. Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings. BMC PLANT BIOLOGY 2023; 23:292. [PMID: 37264351 DOI: 10.1186/s12870-023-04310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) originates in high altitude areas, such as the Andes, and has some inherent characteristics of cold, drought, and salinity tolerance, but is sensitive to high temperature. RESULTS To gain insight into the response mechanism of quinoa to high temperature stress, we conducted an extensive targeted metabolomic study of two cultivars, Dianli-3101 and Dianli-3051, along with a combined transcriptome analysis. A total of 794 metabolites and 54,200 genes were detected, in which the genes related to photosynthesis were found down-regulated at high temperatures, and two metabolites, lipids and flavonoids, showed the largest changes in differential accumulation. Further analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and transcription factors revealed that quinoa inhibits photosynthesis at high temperatures, and the possible strategies being used for high temperature stress management are regulation of heat stress transcription factors (HSFs) to obtain heat tolerance, and regulation of purine metabolism to enhance stress signals for rapid response to high temperature stress. The tolerant genotype could have an enhanced response through lower purine levels. The induction of the stress response could be mediated by HSF transcription factors. The results of this study may provide theoretical references for understanding the response mechanism of quinoa to high temperature stress, and for screening potential high temperature tolerant target genes and high temperature tolerant strains. CONCLUSIONS These findings reveal the regulation of the transcription factor family HSF and the purinergic pathway in response to high temperature stress to improve quinoa varieties with high temperature tolerance.
Collapse
Affiliation(s)
- Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunhe Jiang
- Academic Affairs Office, Yunnan Agricultural University, Kunming, 650201, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yirui Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuesong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Tingzhi Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
5
|
Khan AH, Min L, Ma Y, Zeeshan M, Jin S, Zhang X. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:680-697. [PMID: 36221230 PMCID: PMC10037161 DOI: 10.1111/pbi.13946] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 05/16/2023]
Abstract
Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.
Collapse
Affiliation(s)
- Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Muhammad Zeeshan
- Guangxi Key Laboratory for Agro‐Environment and Agro‐Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of AgricultureGuanxi UniversityNanningChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|