1
|
Mirhosseini H, Dadmehr M, Yousefsani BS, Seif F, Eghbalian F. Tiryāq in traditional Persian medicine: a survey of antidotal plants and their modern pharmacological potential. Front Pharmacol 2025; 16:1503149. [PMID: 40242443 PMCID: PMC12000892 DOI: 10.3389/fphar.2025.1503149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose Tiryāq (Theriac) refers to a single or compound medication historically utilized as a general antidote against numerous poisons in several ethnomedical traditions, especially in traditional Persian medicine (PM). This study aims to summarize the traditional uses, phytochemistry, and pharmacological activities of medicinal plants with tiryāq properties, with a particular focus on their anti-hepatotoxic, hepatoprotective, neuroprotective, and cardioprotective activities. Methods Classical texts of traditional PM were broadly reviewed to extract information about tiryāq and its mechanisms. In addition, a detailed search of scientific databases was performed to validate the pharmacological properties of plants traditionally recognized for their antidotal effects. Results Thirty-one medicinal plants with antidote properties were identified. The primary function of tiryāq, as described in PM, is to neutralize toxins and bolster the immune system. These plants have cardiotonic, hepatoprotective, and neuroprotective properties. In addition to their antidotal applications, tiryāq remedies were traditionally used to manage chronic cough, stomachache, asthma, colic, and other ailments. Modern pharmacological studies support these applications, highlighting the plants' antiviral, immunomodulatory, and antioxidant properties, especially against acute respiratory viral infections and other inflammatory circumstances. Conclusion Tiryāq plays a pivotal role in fortifying essential organs, including the heart, brain, and liver. Its prophylactic use during epidemics, along with its antioxidant and immune-stimulating properties, underscores its therapeutic potential. Further research is needed to conclusively determine the efficacy and broader therapeutic applications of medicinal plants with tiryāq properties.
Collapse
Affiliation(s)
- Haniye Mirhosseini
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Traditional Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Dadmehr
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Traditional Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Sadat Yousefsani
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Traditional Pharmacy, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Seif
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Fatemeh Eghbalian
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Traditional Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sargsyan T, Simonyan HM, Stepanyan L, Tsaturyan A, Vicidomini C, Pastore R, Guerra G, Roviello GN. Neuroprotective Properties of Clove ( Syzygium aromaticum): State of the Art and Future Pharmaceutical Applications for Alzheimer's Disease. Biomolecules 2025; 15:452. [PMID: 40149988 PMCID: PMC11940766 DOI: 10.3390/biom15030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
This study explores the neuropharmacological potential of various molecular and amino acid components derived from Syzygium aromaticum (clove), an aromatic spice with a long history of culinary and medicinal use. Key bioactive compounds such as eugenol, α-humulene, β-caryophyllene, gallic acid, quercetin, and luteolin demonstrate antioxidant, anti-inflammatory, and neuroprotective properties by scavenging free radicals, modulating calcium channels, and reducing neuroinflammation and oxidative stress. Moreover, gallic acid and asiatic acid may exhibit protective effects, including neuronal apoptosis inhibition, while other useful properties of clove phytocompounds include NF-κB pathway inhibition, membrane stabilization, and suppression of pro-inflammatory pathways, possibly in neurons or other relevant cell types, further contributing to neuroprotection and cognitive enhancement. Amino acid analysis revealed essential and non-essential amino acids such as aspartic acid, serine, glutamic acid, glycine, histidine, and arginine in various clove parts (buds, fruits, branches, and leaves). These amino acids play crucial roles in neurotransmitter synthesis, immune modulation, antioxidant defense, and metabolic regulation. Collectively, these bioactive molecules and amino acids contribute to clove's antioxidant, anti-inflammatory, neurotrophic, and neurotransmitter-modulating effects, highlighting its potential as a preventive and therapeutic candidate for neurodegenerative disorders. While preliminary preclinical studies support these neuroprotective properties, further research, including clinical trials, is needed to validate the efficacy and safety of clove-based interventions in neuroprotection.
Collapse
Affiliation(s)
- Tatevik Sargsyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Hayarpi M. Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Lala Stepanyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
| | - Avetis Tsaturyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Raffaele Pastore
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
3
|
Eid AH, S Zaki E, Sabry MO, El-Shiekh RA, Khalaf SS. Exploring the anti-anaphylaxis potential of natural products: A Review. Inflammopharmacology 2025:10.1007/s10787-025-01685-2. [PMID: 40106030 DOI: 10.1007/s10787-025-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Allergies are a common health issue affecting many people around the world, especially in developed countries. They occur when the immune system overreacts to substances that are usually harmless. Some common allergic conditions include asthma, sinus infections, skin rashes, food allergies, hay fever, severe allergic reactions, eczema, swelling, and reactions to medications or insect stings. The causes of these allergies are complex and often linked to genetics, which can lead to heightened immune responses known as atopy. Throughout history, plant extracts have been used for various purposes, including medicine and food. In addition, their bioactive compounds show a wide range of beneficial effects, such as reducing allergic reactions, fighting oxidative stress, mast cell stabilizers, and lowering inflammation, highlighting their potential for treating various health conditions. Flavonoids and phenolic compounds are commonly used in anaphylaxis for their potent anti-inflammatory action. This review aims to promote the use of natural products as potential treatments for anaphylaxis. In addition, the discovery of new drugs derived from natural sources holds significant promise for the management of anaphylaxis.
Collapse
Affiliation(s)
- Aya H Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Miral O Sabry
- Faculty of Science, National University of Singapore, Singapore, Singapore
- Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
4
|
Öner S, Kadı A, Tekman E, Kararenk AC, Özer EB, Ergin KN, Yuca H, Arslan ME, Duman R, Şahin AA, Pinar NM, Atila A, Bona GE, Karakaya S. Morphological, anatomical, and bioactive properties of Hypericum scabrum L.: effects on diabetes mellitus, Alzheimer's disease, and HDFa fibroblasts and U87-MG cancer cells. PROTOPLASMA 2025:10.1007/s00709-025-02037-1. [PMID: 39885008 DOI: 10.1007/s00709-025-02037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Diabetes mellitus (DM) and cancer are multifactorial diseases with significant health consequences, and their relationship with aging makes them particularly challenging. Epidemiological data suggests that individuals with DM are more susceptible to certain cancers. This study examined the bioactive properties of Hypericum scabrum extracts, including methanol, hexane, and others, focusing on their inhibitory effects on key enzymes associated with DM and neurodegenerative diseases, such as acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glucosidase. Additionally, the impact of these extracts on human fibroblast (HDFa) and glioblastoma (U87MG) cancer cells was evaluated. The methanol extract was analyzed for elemental composition using ICP-MS, secondary metabolites, and amino acids via LC-MS/MS and underwent morphological and anatomical characterization. The methanol extract demonstrated notable inhibitory activity, with an IC50 value of < 1 µg/mL against α-glucosidase, surpassing acarbose in efficacy. The flower essential oil exhibited the highest inhibition (79.95%) of butyrylcholinesterase and the strongest acetylcholinesterase inhibition (21.62%). Elemental analysis revealed high concentrations of Na and K, while quinic acid and proline were identified as major metabolites, with proline concentrations reaching 494.0482 nmol/mL in the aerial part extract. The anticancer assays revealed higher cytotoxicity in U87MG glioblastoma cells compared to HDFa fibroblasts, suggesting potential applications for cancer therapy. The plant grows 20-50 cm tall, with yellow flowers and ovoid-ribbed capsules containing brown, reniform seeds. Its leaves are amphistomatic and ornamented, while stems feature striate cuticles and paracytic stomata. The pollen grains are microreticulate with syncolporate apertures. These results underscore the promising therapeutic potential of H. scabrum in managing DM, cancer, and neurodegenerative diseases, with its ability to inhibit key enzymes and show selective cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Abdulrahim Kadı
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Enes Tekman
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
- Ankara University Graduate School of Health Sciences, Ankara, Türkiye
| | - Ayşe Cemre Kararenk
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Elif Beyza Özer
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Kübra Nalkıran Ergin
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Hafize Yuca
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Resul Duman
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Aydan Acar Şahin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nur Münevver Pinar
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Alptuğ Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Gülnur Ekşi Bona
- Department of Pharmaceutical Botany, Faculty of Pharmacy, İstanbul-Cerrahpaşa University, İstanbul, Türkiye
| | - Songül Karakaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
5
|
Rajkumar M, Davis Presley SI, Thiyagarajulu N, Girigoswami K, Janani G, Kamaraj C, Madheswaran B, Prajapati B, Ali N, Khan MR. Gelatin/PLA-loaded gold nanocomposites synthesis using Syzygium cumini fruit extract and their antioxidant, antibacterial, anti-inflammatory, antidiabetic and anti-Alzheimer's activities. Sci Rep 2025; 15:2110. [PMID: 39814774 PMCID: PMC11735676 DOI: 10.1038/s41598-024-84098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis. The FTIR spectrum showed various functional groups and the XRD patterns confirmed the crystalline shape and structure of nanocomposites. The FESEM and HRTEM results showed a oval shape of Ge/PLA/AuNCs with an average particle size of 21 nm. The Ge/PLA/AuNC's remarkable antioxidant activity, as evidenced by DPPH (70.84 ± 1.64%), ABTS activity (86.17 ± 1.96%), and reducing power activity (78.42 ± 1.48%) at a concentration of 100 μg/mL was observed. The zone of inhibition against Staphylococcus aureus (19.45 ± 0.89 mm) and Echericia coli (20.83 ± 0.97 mm) revealed the excellent antibacterial activity of Ge/PLA/AuNCs. The anti-diabetic activity of Ge/PLA/AuNCs was supported by inhibition of α-amylase (82.56 ± 1.49%) and α-glucosidase (80.27 ± 1.57%). The anti-Alzheimer activity was confirmed by inhibition of the AChE (76.37 ± 1.18%) and BChE (85.94 ± 1.38%) enzymes. In vivo studies of zebrafish embryos showed that Ge/PLA/AuNCs have excellent biocompatibility and nontoxicity. The SH-SY5Y cell line study demonstrated improved cell viability (95.27 ± 1.62%) and enhanced neuronal cell growth following Ge/PLA/AuNCs treatment. In conclusion, the present study highlights the cost-effective and non-toxic properties of Ge/PLA/AuNCs. Furthermore, it presents an attractive and promising approach for various future biomedical applications.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603 110, India
| | - S I Davis Presley
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603 110, India.
| | - Nathiya Thiyagarajulu
- Department of Life Sciences, Kristu Jayanti College, Bengaluru, Karnataka, 560 077, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, 603 110, India.
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602101, India.
| | - Gopalarethinam Janani
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, 603 110, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Bharathi Madheswaran
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Ariyanur, Salem, Tamil Nadu, 636 308, India
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, 384012, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Thi Huynh TT, Quang MT, Nguyen HD. The complete chloroplast genome of Syzygium zeylanicum (Myrtaceae, Myrtales) and its phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:1642-1647. [PMID: 39635203 PMCID: PMC11616748 DOI: 10.1080/23802359.2024.2435905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The complete chloroplast genome of Syzygium zeylanicum (L.) DC. 1828 has been sequenced and analyzed for the first time. The S. zeylanicum chloroplast genome is 159,445 bp in length, comprised of a large single-copy region (88,034 bp), a small single-copy region (18,455 bp), and a pair of inverted repeat regions (26,478 bp each). The genome encoded 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis indicated that S. zeylanicum is closely related to S. acuminatissimum. This research provides essential genomic data for S. zeylanicum, offering valuable resources for future comparative genomics, phylogenetics, and conservation biology studies.
Collapse
Affiliation(s)
- Thu-Thao Thi Huynh
- Department of Hematology, Faculty of Medical Laboratory, Hong Bang International University, Ho Chi Minh City, Vietnam
| | - Minh Trong Quang
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Danh Nguyen
- Functional Genomics Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Moise G, Jîjie AR, Moacă EA, Predescu IA, Dehelean CA, Hegheș A, Vlad DC, Popescu R, Vlad CS. Plants' Impact on the Human Brain-Exploring the Neuroprotective and Neurotoxic Potential of Plants. Pharmaceuticals (Basel) 2024; 17:1339. [PMID: 39458980 PMCID: PMC11510325 DOI: 10.3390/ph17101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. DISCUSSION Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity. CONSLUSIONS This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.
Collapse
Affiliation(s)
- Georgiana Moise
- Department of Clinical Pharmacology, The Doctoral School of Medicine, “Pius Brînzeu” County Emergency Clinical Hospital Timisoara, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina-Alexandra Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina Hegheș
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliborca Cristina Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department II—Department of Microscopic Morphology, Division of Cell and Molecular Biology II, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
| |
Collapse
|
8
|
Usmani K, Jain SK, Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116828. [PMID: 37369335 DOI: 10.1016/j.jep.2023.116828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is often treated and prevented using the pharmacological properties of traditional medicinal plants. These healthcare systems are among the most well-known, conveniently accessible, and economically priced in India and several other Asian countries. Traditional Indian Ayurvedic plants have the potential to be used as phyto-therapeutics, to create novel anti-asthmatic drugs, and as a cost-effective source of pharmaceuticals. Current conventional therapies have drawbacks, including serious side effects and expensive costs that interfere with treatment compliance and affect the patient's quality of life. The primary objective of the article is to comprehensively evaluate the advancement of research on the protective phytochemicals of traditional plants that target immune responses and signaling cascades in inflammatory experimental asthma models. The study would assist in paving the way for the creation of natural phytomedicines that are protective, anti-inflammatory, and immunomodulatory against asthma, which may then be used in individualized asthma therapy. AIM OF THE STUDY The study demonstrates the mechanisms of action of phytochemicals present in traditional medicinal plants, diminish pulmonary disorder in both in vivo and in vitro models of asthma. MATERIALS AND METHODS A comprehensive review of the literature on conventional plant-based asthma therapies was performed from 2006 to 2022. The study uses authoritative scientific sources such as PubMed, PubChem Compound, Wiley Online Library, Science Direct, Springer Link, and Google Scholar to collect information on potential phytochemicals and their mechanisms of action. World Flora Online (http://www.worldfloraonline.org) and Plants of the World Online (https://wcsp.science.kew.org) databases were used for the scientific names of medicinal plants. RESULTS The study outlines the phytochemical mechanisms of some traditional Ayurveda botanicals used to treat asthma. Active phytochemicals including curcumin, withaferin-A, piperine, glabridin, glycyrrhizin, 18β-glycyrrhetinic acid, trans-cinnamaldehyde, α-hederin, thymoquinone, eugenol, [6]-shogoal, and gingerol may treat asthma by controlling inflammation and airway remodeling. The study concluded that certain Ayurvedic plants' phytochemicals have the ability to reduce inflammation and modulate the immune system, that can effectively cure asthma. CONCLUSION Plants used in traditional Ayurvedic medicine have been utilized for millennia, advocating phyto-therapy as a treatment for a variety of illnesses. A theoretical foundation for the use of cutting-edge asthma treatments has been built with the growth of experimental research on traditional phytochemicals. In-depth phytochemical research for the treatment of asthma using Indian Traditional Ayurvedic herbs is compiled in the study. The approach for preventative therapeutics and cutting-edge alternatives to battle the molecular pathways in the pathophysiology of asthma are the key themes of the study. The phytochemical mechanism of action of traditional Ayurvedic herbs is explained to get the attention of the pharmaceutical industry so they can make future anti-asthma drugs for personalized asthma care in the community. The study develops strategies for customized phyto-therapeutics, concentrating on low-cost, side-effect-free approaches that employ bioactive phytochemicals from plants as the major source of effective anti-asthmatic therapy.
Collapse
Affiliation(s)
- Kainat Usmani
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
9
|
Peron G, Moafpoorian R, Faggian M, Realdon N, Zengin G, Zarshenas MM, Dall'Acqua S. Linking traditional medicine to modern phytotherapy: Chemical characterization and assessment of antioxidant and anticholinesterase effects in vitro of a natural Persian remedy for dementia. J Pharm Biomed Anal 2023; 235:115674. [PMID: 37634357 DOI: 10.1016/j.jpba.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Several natural remedies are used in the Traditional Persian Medicine (TPM) to prevent dementia, but their efficacy is debated. In this work, an improved "Safoof-e-Nesyān" formulation described in the "Qarābādin-e-Azam" pharmacopoeia was developed, and its chemical composition and antioxidant and anti-cholinesterase properties were assessed. The formulation contains a mixture (FM) of Cinnamomum cassia (CC), C. verum (CV), Pistacia lentiscus (PL), Rheum palmatum (RP), Syzygium aromaticum (SA), and Zingiber officinalis (ZO) powdered plants. Its total phenolic content is 110.45 mg GAE/g, while the total flavonoid content is 6.28 mg RE/g. 66 secondary metabolites (mainly tannins, flavonoids, anthraquinones, and gingerols) were identified by UPLC-QToF-MS analysis. FM exerts antioxidant effects by scavenging radicals, and by reducing and chelating metals such as Mb, Cu and Fe. The anticholinesterase activity of one gram of the FM equals that of 3.60 mg of the reference drug galantamine, on both acetyl- and butyryl-cholinesterase. Correlations between specific compounds and bioactivities were highlighted by multivariate analysis of data: lyoniresinol 9'-glucoside strongly correlates with antiradical activities on DPPH and ABTS and reducing activity on Cu, and with anti-AChE effects. Most of the identified flavonoids and the ellagic acid derivatives positively correlate with the reducing activity on Fe and Mb, and with anti-BChE effects. Finally, a tablet formulation of the FM was developed, and its physical properties were preliminarily assessed. Overall, our results indicate that the FM may be a useful natural remedy for dementia, although further safety and efficacy assessments in vivo are required.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Reza Moafpoorian
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marta Faggian
- Unired Srl, Via Niccolò Tommaseo 69, Padova 35131, Italy
| | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
10
|
Aljarari RM. Neuroprotective effects of a combination of Boswellia papyrifera and Syzygium aromaticum on AlCl3 induced Alzheimer's disease in male albino rat. BRAZ J BIOL 2023; 83:e272466. [PMID: 37851769 DOI: 10.1590/1519-6984.272466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/24/2023] [Indexed: 10/20/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by hippocampal, and cortical neuron deterioration, oxidative stress, and severe cognitive dysfunction. Aluminum is a neurotoxin inducer for cognitive impairments associated with AD. The treatment approaches for AD are unsatisfactory. Boswellia papyrifera and Syzygium aromaticum are known for their pharmacological assets, including antioxidant activity. Therefore, the current study explored the possible mitigating effects of a combination of Boswellia papyrifera and Syzygium aromaticum against aluminum chloride (AlCl3) induced AD. The AD model was established using AlCl3 (100 mg/kg), and the rats were orally administrated with Boswellia papyrifera or Syzygium aromaticum or a combination of them daily for 8 weeks. The Y-maze test was used to test cognition in the rats, while acetylcholinesterase (AChE) and oxidative stress markers were estimated in homogenates of the cerebral cortex and hippocampus. Also, the histopathological examination of the cortex and hippocampus were investigated. The results revealed that administration of either B. papyrifera or S. aromaticum extracts significantly improved the cognitive functions of AD rats, enhanced AChE levels, increased oxidative enzymes levels, including SOD and GSH, and reduced MDA levels in homogenates of the cerebral cortex and hippocampus and confirmed by improvement in histological examination. However, using a combination therapy gave better results compared to a single treatment. In conclusion, the present study provided primary evidence for using a combination of B. papyrifera and S. aromaticum to treat cognitive dysfunction associated with AlCl3 Induced AD by improving the AChE levels and modulating oxidative stress in the brain.
Collapse
Affiliation(s)
- R M Aljarari
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Melo NDOR, De Sousa Silva M, Ribeiro JPN, Lima WP, Francisco Vagnaldo FV, Cavalcanti BC, De Sousa Silva AA, Dornelas CA. Synergistic Antigenotoxic and Antioxidant Action of Gum Arabic and Eugenol in Rat Liver Following Induction of Colorectal Carcinogenesis. Asian Pac J Cancer Prev 2023; 24:3447-3457. [PMID: 37898850 PMCID: PMC10770658 DOI: 10.31557/apjcp.2023.24.10.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE Much research has been conducted to identify natural antioxidant and antimutagenic compounds capable of preventing, reverting or treating conditions caused by oxidative stress and genotoxicity. In this study we evaluated the effects of 10% gum arabic (GA) and eugenol (EUG) on hepatic oxidative stress and genotoxicity induced by dimethylhydrazine (DMH) in rats. METHODS The prevention arm of the study included 4 control groups and 4 experimental groups. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the same period and for an additional 9 weeks, the animals received either water, 10% GA , EUG or 10% GA + EUG by gavage. The treatment arm of the study included 4 control groups and 4 experimental groups. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the subsequent 9 weeks, the animals received either water, 10% GA, EUG or 10% GA + EUG by gavage. Finally, the livers were harvested for histopathological study with HE, measurement of genotoxicity and oxidative stress. RESULT Genotoxicity and oxidative stress were found to be significantly lower in Group XII (animals treated concomitantly with GA and EUG). This is the first study to observe the synergistic action of GA and EUG administered concomitantly in this scenario. CONCLUSION Indicating a synergistic antigenotoxic and antioxidant effect on liver cells in rats with DMH-induced colorectal carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Vagnaldo Francisco Vagnaldo
- Researcher at NRDM (Nucleus of Research and Development of Medicines), Laboratory of Pharmacology and Preclinical Research, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
| | - Bruno Coêlho Cavalcanti
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Brazill.
| | - Antônio Adailson De Sousa Silva
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Brazill.
| | - Conceição Aparecida Dornelas
- Permanent Professor of the Postgraduate Program stricto sensu in Pathology and Medical-Surgical Sciences, School of Medicine, Federal University of Ceara Fortaleza, Brazil.
| |
Collapse
|
12
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
13
|
Sharma H, Kim DY, Shim KH, Sharma N, An SSA. Multi-Targeting Neuroprotective Effects of Syzygium aromaticum Bud Extracts and Their Key Phytocompounds against Neurodegenerative Diseases. Int J Mol Sci 2023; 24:8148. [PMID: 37175851 PMCID: PMC10178913 DOI: 10.3390/ijms24098148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes a gradual loss of normal motor and cognitive function. The complex AD pathophysiology involves various factors such as oxidative stress, neuroinflammation, amyloid-beta (Aβ) aggregation, disturbed neurotransmission, and apoptosis. The available drugs suffer from a range of side effects and are not able to cover different aspects of the disease. Therefore, finding a safer therapeutic approach that can affect multiple targets at a time is highly desirable. In the present study, the underlying neuroprotective mechanism of an important culinary spice, Syzygium aromaticum (Clove) extract, and major bioactive compounds were studied in hydrogen peroxide-induced oxidative stress in human neuroblastoma SH-SY5Y cell lines as a model. The extracts were subjected to GC-MS to identify important bioactive components. The extracts and key bio-actives reduced reactive oxygen species (ROS), restored mitochondrial membrane potential (MMP), and provided neuroprotection from H2O2-induced oxidative stress in cell-based assays due to the antioxidant action. They also reduced lipid peroxidation significantly and restored GSH content. Clove extracts have also displayed anti-acetylcholinesterase (AChE) activity, anti-glycation potential, and Aβ aggregation/fibrilization inhibition. The multitarget neuroprotective approach displayed by Clove makes it a potential candidate for AD drug development.
Collapse
Affiliation(s)
| | | | | | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|