1
|
Kim JH, Sim WJ, Nam J, Park SH, Song JH, Nam TG, Kim JH, Lim W, Lim TG. Skin-whitening effects of Spergularia marina by suppressing MITF translocation. Food Sci Biotechnol 2024; 33:925-933. [PMID: 38371694 PMCID: PMC10866852 DOI: 10.1007/s10068-023-01376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 02/20/2024] Open
Abstract
Spergularia marina is a plant that grows in salty regions along the coastline and exerts radical-scavenging and anti-inflammatory effects. In this study, we investigated the skin-whitening effects of S. marina extract (SME) in B16F10 melanoma cells. SME was found to exert radical-scavenging effects. It suppressed α-melanocyte-stimulating hormone-induced melanogenesis and tyrosinase activity. We also assessed the melanin production signaling pathway to identify the inhibitory action mechanism of SME on melanogenesis. SME decreased the protein expression levels of tyrosinase-related protein (TRP)-1, TRP-2, and tyrosinase, which play important roles in melanogenesis. Furthermore, western blotting revealed that SME inhibited the nuclear translocation of melanocyte inducing transcription factor (MITF), which is a transcription factor for TRP-1, TRP-2, and tyrosinase, suggesting that SME exerts its skin-whitening effect by inhibiting MITF nuclear translocation. Therefore, SME may potentially be used in skin-whitening medicines and cosmetics.
Collapse
Affiliation(s)
- Jae-Hoon Kim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Woo-Jin Sim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Jisoo Nam
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Soo-Hyun Park
- Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Ji-Hye Song
- Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Tae Gyu Nam
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyounggi University, Suwon, 16227 Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin (Women’s) University, Seoul, 01133 Republic of Korea
| | - Wonchul Lim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
2
|
Erdenebaatar K, Park JM, Koo J. The complete chloroplast genome of Spergularia marina (Caryophyllaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:1343-1346. [PMID: 38196788 PMCID: PMC10776058 DOI: 10.1080/23802359.2023.2288891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Spergularia marina (L.) Griseb, 1843 (Caryophyllaceae) is a halophytic plant widely distributed along the southwestern coast of the Korean Peninsula. In this study, the complete chloroplast genome sequence of S. marina was determined using next-generation sequencing (NGS). The chloroplast genome of S. marina is 152,460 bp in length with 36.7% GC content. It comprises a large single-copy (LSC; 83,321), a small single copy (SSC; 17,205 bp), and a pair of inverted repeats (IRs; 25,967 bp) with a typical quadripartite structure. It consists of 131 genes, including 86 protein-coding genes, 8 ribosomal RNAs, and 37 transfer RNAs. Phylogenetic analysis using complete chloroplast genomes showed that among the 17 Caryophyllaceae species, S. marina is most closely related to Spergula arvensis. Since no complete chloroplast genome of the genus Spergularia has been reported to date, our study provides useful genetic information for determining phylogenetic relationships within the Caryophyllaceae.
Collapse
Affiliation(s)
- Khongorzul Erdenebaatar
- Division of Science Education and Institute of Fusion Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Joon Moh Park
- Forest Resource Research Division, Jeollabuk-do Forest Environment Research Institute, Jinan, Republic of Korea
| | - Jachoon Koo
- Division of Science Education and Institute of Fusion Science, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
4
|
Pungin A, Lartseva L, Loskutnikova V, Shakhov V, Popova E, Skrypnik L, Krol O. Effect of Salinity Stress on Phenolic Compounds and Antioxidant Activity in Halophytes Spergularia marina (L.) Griseb. and Glaux maritima L. Cultured In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091905. [PMID: 37176962 PMCID: PMC10181189 DOI: 10.3390/plants12091905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The study of halophytes as sources of phenolic compounds, as well as conditions that further enhance the accumulation of biologically active compounds in them, is of particular interest. In this paper, the effect of different salinity levels (25-500 mM in the form of NaCl) on the content of phenolic compounds and the antioxidant activity of two rare halophyte species Spergularia marina (L.) Griseb. and Glaux maritima L. cultured in vitro was investigated. A species-specific reaction of plants to salinization was established. In G. maritima, the maximum total content of phenolic compounds was observed at 50-100 mM, flavonoids 75-400 mM, and hydroxycinnamic acids 200-300 mM, as well as individual phenolics (protocatechuic acid, catechin, astragalin, hyperoside, rutin, isoquercitrin, and apigenin derivative) at 100-300 mM NaCl. For S. marina, on the contrary, there was a slight decrease in the content of phenolic compounds when NaCl was added to the nutrient medium compared to the control. The content of protocatechuic acid, rosmarinic acid, and apigenin derivative significantly decreased with increased salt stress. The change in antioxidant activity at different salinity levels was also species specific. The maximum values of different groups of phenolic compounds in G. maritima were observed at 50-300 mM NaCl. The cultivation of S. marina without the addition of NaCl and at 500 mM NaCl allowed the production of plants with the highest content of phenolic compounds. The obtained results can be further used in the development of protocols for the cultivation of these plants in vitro in order to induce the biosynthesis of phenolic compounds in them.
Collapse
Affiliation(s)
- Artem Pungin
- MedBio Cluster, Immanuel Kant Baltic Federal University, Universitetskaya Str. 2, 236040 Kaliningrad, Russia
| | - Lidia Lartseva
- MedBio Cluster, Immanuel Kant Baltic Federal University, Universitetskaya Str. 2, 236040 Kaliningrad, Russia
| | - Violetta Loskutnikova
- MedBio Cluster, Immanuel Kant Baltic Federal University, Universitetskaya Str. 2, 236040 Kaliningrad, Russia
| | - Vladislav Shakhov
- MedBio Cluster, Immanuel Kant Baltic Federal University, Universitetskaya Str. 2, 236040 Kaliningrad, Russia
| | - Elena Popova
- MedBio Cluster, Immanuel Kant Baltic Federal University, Universitetskaya Str. 2, 236040 Kaliningrad, Russia
| | - Liubov Skrypnik
- MedBio Cluster, Immanuel Kant Baltic Federal University, Universitetskaya Str. 2, 236040 Kaliningrad, Russia
| | - Olesya Krol
- MedBio Cluster, Immanuel Kant Baltic Federal University, Universitetskaya Str. 2, 236040 Kaliningrad, Russia
| |
Collapse
|