1
|
Maliuvanchuk S, Grytsyk A, Popadynets O, Kotyk T, Raal A, Koshovyi O. Ajuga reptans L. Herb Extracts: Phytochemical Composition and Pharmacological Activity Screening. PLANTS (BASEL, SWITZERLAND) 2025; 14:219. [PMID: 39861572 PMCID: PMC11768386 DOI: 10.3390/plants14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
The genus Ajuga (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of Ajuga reptans holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the A. reptans herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS. The assays of the main substances' groups were also determined by spectrophotometry (vitamin K1, polyphenols, tannins, flavonoids, and hydroxycinnamic acids) and titrometry (ascorbic and organic acids). A. reptans herb extracts are practically non-toxic, exhibit hepatoprotective activity (dose 25 mg/kg) in experimental carbon tetrachloride-induced hepatitis, moderate anti-inflammatory activity (dose 100 mg/kg) in carrageenan-induced edema models, and possess significant local hemostatic (reducing bleeding time by 40.6%) and wound-healing properties (complete wound healing after 9 days). The aqueous-ethanolic soft A. reptans extract (extractant 50% ethanol) demonstrated the most pronounced hepatoprotective and anti-inflammatory effects. A. reptans extracts are capable of inhibiting the growth of microorganisms and showing higher activity against Gram-positive bacteria. A. reptans herb extracts are promising agents for implementation in official medicine as wound healing and hepatoprotective remedies after further preclinical and clinical studies.
Collapse
Affiliation(s)
- Svitlana Maliuvanchuk
- Department of Pharmaceutical Management, Drug Technology and Pharmacognosy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (S.M.); (A.G.)
| | - Andriy Grytsyk
- Department of Pharmaceutical Management, Drug Technology and Pharmacognosy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (S.M.); (A.G.)
| | - Oksana Popadynets
- Department of Anatomy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (O.P.); (T.K.);
| | - Taras Kotyk
- Department of Anatomy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (O.P.); (T.K.);
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department of Pharmacognosy and Nutriciology, The National University of Pharmacy, 61002 Kharkiv, Ukraine
| |
Collapse
|
2
|
Koshovyi O, Sepp J, Jakštas V, Žvikas V, Kireyev I, Karpun Y, Odyntsova V, Heinämäki J, Raal A. German Chamomile ( Matricaria chamomilla L.) Flower Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological, and Molecular Docking Study. Int J Mol Sci 2024; 25:8292. [PMID: 39125862 PMCID: PMC11311743 DOI: 10.3390/ijms25158292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
German chamomile (Matricaria chamomilla L.) is an essential oil- containing medicinal plant used worldwide. The aim of this study was to gain knowledge of the phytochemical composition and the analgesic and soporific activity of Matricaria chamomilla L. (German chamomile) flower extract and its amino acid preparations, to predict the mechanisms of their effects by molecular docking and to develop aqueous printing gels and novel 3D-printed oral dosage forms for the flower extracts. In total, 22 polyphenolic compounds and 14 amino acids were identified and quantified in the M. chamomilla extracts. In vivo animal studies with rodents showed that the oral administration of such extracts revealed the potential for treating of sleep disorders and diseases accompanied by pain. Amino acids were found to potentiate these effects. Glycine enhanced the analgesic activity the most, while lysine and β-alanine improved the soporific activity. The molecular docking analysis revealed a high probability of γ-aminobutyric acid type A (GABAA) and N-methyl-D-aspartate (NMDA) receptor antagonism and 5-lipoxygenase (LOX-5) inhibition by the extracts. A polyethylene oxide (PEO)-based gel composition with the M. chamomilla extracts was proposed for preparing a novel 3D-printed dosage form for oral administration. These 3D-printed extract preparations can be used, for example, in dietary supplement applications.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
- The Department of Clinical Pharmacology and Clinical Pharmacy, National University of Pharmacy, 61002 Kharkiv, Ukraine;
| | - Janne Sepp
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
| | - Valdas Jakštas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Vaidotas Žvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Igor Kireyev
- The Department of Clinical Pharmacology and Clinical Pharmacy, National University of Pharmacy, 61002 Kharkiv, Ukraine;
| | | | - Vira Odyntsova
- The Department of Pharmacognosy, Pharmacology, and Botany, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine;
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
| |
Collapse
|
3
|
Koshovyi O, Komisarenko M, Osolodchenko T, Komissarenko A, Mändar R, Kõljalg S, Heinämäki J, Raal A. Eucalypt Extracts Prepared by a No-Waste Method and Their 3D-Printed Dosage Forms Show Antimicrobial and Anti-Inflammatory Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:754. [PMID: 38592748 PMCID: PMC10976152 DOI: 10.3390/plants13060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
The pharmaceutical industry usually utilizes either hydrophobic or hydrophilic substances extracted from raw plant materials to prepare a final product. However, the waste products from the plant material still contain biologically active components with the opposite solubility. The aim of this study was to enhance the comprehensive usability of plant materials by developing a new no-waste extraction method for eucalypt leaves and by investigating the phytochemical and pharmacological properties of eucalypt extracts and their 3D-printed dosage forms. The present extraction method enabled us to prepare both hydrophobic soft extracts and hydrophilic (aqueous) dry extracts. We identified a total of 28 terpenes in the hydrophobic soft extract. In the hydrophilic dry extract, a total of 57 substances were identified, and 26 of them were successfully isolated. The eucalypt extracts studied showed significant antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans, Corynebacterium diphtheriae gravis, and Corynebacterium diphtheriae mitis. The anti-inflammatory activity of the dry extract was studied using a formalin-induced-edema model in mice. The maximum anti-exudative effect of the dry extract was 61.5% at a dose of 20 mg/kg. Composite gels of polyethylene oxide (PEO) and eucalypt extract were developed, and the key process parameters for semi-solid extrusion (SSE) 3D printing of such gels were verified. The SSE 3D-printed preparations of novel synergistically acting eucalypt extracts could have uses in antimicrobial and anti-inflammatory medicinal applications.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Mykola Komisarenko
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Tatyana Osolodchenko
- State Institution “I.Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine”, 14-16, Pushkinskaya St., 61057 Kharkov, Ukraine;
| | - Andrey Komissarenko
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Reet Mändar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (R.M.); (S.K.)
| | - Siiri Kõljalg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (R.M.); (S.K.)
- Laboratory of Clinical Microbiology, United Laboratories, Tartu University Hospital, L. Puusepa 1a, 50406 Tartu, Estonia
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| |
Collapse
|
4
|
Kukhtenko H, Bevz N, Konechnyi Y, Kukhtenko O, Jasicka-Misiak I. Spectrophotometric and Chromatographic Assessment of Total Polyphenol and Flavonoid Content in Rhododendron tomentosum Extracts and Their Antioxidant and Antimicrobial Activity. Molecules 2024; 29:1095. [PMID: 38474607 DOI: 10.3390/molecules29051095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In the literature, the chemical composition of Rhododendron tomentosum is mainly represented by the study of isoprenoid compounds of essential oil. In contrast, the study of the content of flavonoids will contribute to the expansion of pharmacological action and the use of the medicinal plant for medical purposes. The paper deals with the technology of extracts from Rh. tomentosum shoots using ethanol of various concentrations and purified water as an extractant. Extracts from Rh. tomentosum were obtained by a modified method that combined the effects of ultrasound and temperature to maximize the extraction of biologically active substances from the raw material. Using the method of high-performance thin-layer chromatography in a system with solvents ethyl acetate/formic acid/water (15:1:1), the following substances have been separated and identified in all the extracts obtained: rutin, hyperoside, quercetin, and chlorogenic acid. The total polyphenol content (TPC) and total flavonoid content (TFC) were estimated using spectrophotometric methods involving the Folin-Ciocalteu (F-C) reagent and the complexation reaction with aluminum chloride, respectively. A correlation analysis was conducted between antioxidant activity and the polyphenolic substance content. Following the DPPH assay, regression analysis shows that phenolic compounds contribute to about 80% (r2 = 0.8028, p < 0.05) of radical scavenging properties in the extract of Rh. tomentosum. The extract of Rh. tomentosum obtained by ethanol 30% inhibits the growth of test cultures of microorganisms in 1:1 and 1:2 dilutions of the clinical strains #211 Staphylococcus aureus and #222 Enterococcus spp. and the reference strain Pseudomonas aeruginosa ATCC 10145.
Collapse
Affiliation(s)
- Halyna Kukhtenko
- Institute of Chemistry, University of Opole, 48 Oleska Str., 45-052 Opole, Poland
- Department of Cosmetology and Aromology, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Nataliia Bevz
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska, 79010 Lviv, Ukraine
| | - Oleksandr Kukhtenko
- Department of Technology of Pharmaceutical Preparations, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | | |
Collapse
|
5
|
Sepp J, Koshovyi O, Jakstas V, Žvikas V, Botsula I, Kireyev I, Tsemenko K, Kukhtenko O, Kogermann K, Heinämäki J, Raal A. Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile ( Matricaria chamomilla L.) Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:350. [PMID: 38337883 PMCID: PMC10857454 DOI: 10.3390/plants13030350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
Galenic preparations of German chamomile are used to treat mild skin diseases, inflammation, and spasms, and they have also been reported to have anxiolytic and sedative effects. The medicinal use of chamomile is well known in ethnomedicine. After obtaining its galenic preparations, there is lots of waste left, so it is expedient to develop waste-free technologies. The aims of this study were to gain knowledge of the ethnomedical status of chamomile in the past and present, develop methods for preparing essential oils and dry extracts from German chamomile flowers using complex processing, reveal the phytochemical composition of such extracts, and verify the analgesic and soporific activity of the extracts. Two methods for the complex processing of German chamomile flowers were developed, which allowed us to obtain the essential oil and dry extracts of the tincture and aqueous extracts as byproducts. A total of 22 phenolic compounds (7 hydroxycinnamic acids, 13 flavonoids, and 2 phenolic acids) were found in the dry extracts by using UPLC-MS/MS. In total, nine main terpenoids were identified in the chamomile oil, which is of the bisabolol chemotype. During the production of chamomile tincture, a raw material-extractant ratio of 1:14-1:16 and triple extraction are recommended for its highest yield. In in vivo studies with mice and rats, the extracts showed analgesic activity and improvements in sleep. The highest sedative and analgesic effects in rodents were found with the dry extract prepared by using a 70% aqueous ethanol solution for extraction at a dose of 50 mg/kg. The developed methods for the complex processing of German chamomile flowers are advisable for implementation into the pharmaceutical industry to reduce the volume of waste during the production of its essential oil and tincture, and to obtain new products.
Collapse
Affiliation(s)
- Janne Sepp
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.S.); (O.K.); (K.K.); (J.H.)
| | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.S.); (O.K.); (K.K.); (J.H.)
- Pharmacognosy Department, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Vaidotas Žvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Iryna Botsula
- Pharmacology and Pharmacotherapy Department, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine; (I.B.); (I.K.); (K.T.)
| | - Igor Kireyev
- Pharmacology and Pharmacotherapy Department, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine; (I.B.); (I.K.); (K.T.)
| | - Karina Tsemenko
- Pharmacology and Pharmacotherapy Department, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine; (I.B.); (I.K.); (K.T.)
| | - Oleksandr Kukhtenko
- Pharmaceutical Technology of Drugs Department, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine;
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.S.); (O.K.); (K.K.); (J.H.)
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.S.); (O.K.); (K.K.); (J.H.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.S.); (O.K.); (K.K.); (J.H.)
| |
Collapse
|
6
|
Koshovyi O, Vlasova I, Laur H, Kravchenko G, Krasilnikova O, Granica S, Piwowarski JP, Heinämäki J, Raal A. Chemical Composition and Insulin-Resistance Activity of Arginine-Loaded American Cranberry ( Vaccinium macrocarpon Aiton, Ericaceae) Leaf Extracts. Pharmaceutics 2023; 15:2528. [PMID: 38004508 PMCID: PMC10675343 DOI: 10.3390/pharmaceutics15112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
One of the key pathogenetic links in type 2 diabetes mellitus (T2DM) is the formation of insulin resistance (IR). Besides a wide selection of synthetic antidiabetic drugs, various plant-origin extracts are also available to support the treatment of T2DM. This study aimed to investigate and gain knowledge of the chemical composition and potential IR correction effect of American cranberry (Vaccinium macrocarpon Aiton) leaf extracts and formulate novel 3D-printed oral dosage forms for such extracts. The bioactivity and IR of L-arginine-loaded cranberry leaf extracts were studied in vivo in rats. The cranberry leaf extracts consisted of quinic, 3-caffeoylquinic (chlorogenic), p-coumaroylquinic acids, quercetin 3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-xyloside, quercetin-3-O-arabino pyranoside, quercetin-3-O-arabinofuranoside, quercetin 3-O-rhamnoside, and quercetin-O-p-coumaroyl hexoside-2 identified by HPLC. In vivo studies with rats showed that the oral administration of the cranberry leaf extracts had a positive effect on insulin sensitivity coefficients under the insulin tolerance test and affected homeostasis model assessment IR levels and liver lipid content with experimental IR. A novel 3D-printed immediate-release dosage form was developed for the oral administration of cranberry leaf extracts using polyethylene oxide as a carrier gel in semi-solid extrusion 3D printing. In conclusion, American cranberry leaf extracts loaded with L-arginine could find uses in preventing health issues associated with IR.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
| | - Inna Vlasova
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (J.P.P.)
| | - Heleriin Laur
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| | - Ganna Kravchenko
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
| | - Oksana Krasilnikova
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (J.P.P.)
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (J.P.P.)
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| |
Collapse
|
7
|
Koshovyi O, Vlasova I, Jakštas V, Vilkickytė G, Žvikas V, Hrytsyk R, Grytsyk L, Raal A. American Cranberry ( Oxycoccus macrocarpus (Ait.) Pursh) Leaves Extract and Its Amino-Acids Preparation: The Phytochemical and Pharmacological Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:2010. [PMID: 37653927 PMCID: PMC10221213 DOI: 10.3390/plants12102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
The liver is an organ with several important biofunctions, for which there are very few effective and safe preparations that promote the functioning, protection, and regeneration of cells. Sufficiently safe preparations with hepatoprotective activity can be found in plants. The aim of our study was to investigate the chemical composition of an extract made from American cranberry (Oxycoccus macrocarpus (Ait.) Pursh) leaves and its amino-acids preparations as well as their possible hepatoprotective activity. Using the UPLC-MS/MS method, we identified 19 phenolic compounds (8 flavonoids (flavones and flavonols), 4 anthocyanins, 3 hydroxycinnamic acids, and 2 catechins). The prophylactic and therapeutic administration of the American cranberry-leaves extracts led to a decrease in the lipid-peroxidation process during a study of tetrachloromethane acute toxic damage in the liver of rats. As a result of animal studies, the most effective hepatoprotective activity was found in the extract preparations with valine and arginine.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department of Pharmacognosy, The National University of Pharmacy, 53 Pushkinska St, 61002 Kharkiv, Ukraine;
| | - Inna Vlasova
- Department of Pharmacognosy, The National University of Pharmacy, 53 Pushkinska St, 61002 Kharkiv, Ukraine;
| | - Valdas Jakštas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.J.); (G.V.); (V.Ž.)
| | - Gabrielė Vilkickytė
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.J.); (G.V.); (V.Ž.)
| | - Vaidotas Žvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.J.); (G.V.); (V.Ž.)
| | - Roman Hrytsyk
- Department of Pharmaceutical Management, Drug Technology and Pharmacognosy, Ivano-Frankivsk National Medical University, 2 Halytska Str., 76018 Ivano-Frankivsk, Ukraine; (R.H.); (L.G.)
| | - Lyubov Grytsyk
- Department of Pharmaceutical Management, Drug Technology and Pharmacognosy, Ivano-Frankivsk National Medical University, 2 Halytska Str., 76018 Ivano-Frankivsk, Ukraine; (R.H.); (L.G.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
8
|
Zuo Y, He Z, Yang W, Sun C, Ye X, Tian J, Kong X. Preparation of Neohesperidin-Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility. Molecules 2023; 28:molecules28093901. [PMID: 37175311 PMCID: PMC10179776 DOI: 10.3390/molecules28093901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Neohesperidin (NH), a natural flavonoid, exerts multiple actions, such as antioxidant, antiviral, antiallergic, vasoprotective, anticarcinogenic and anti-inflammatory effects, as well as inhibition of tumor progression. In this study, the NH-taro starch complex is prepared, and the effects of NH complexation on the physicochemical properties, structure and in vitro digestibility of taro starch (TS) are investigated. Results showed that NH complexation significantly affected starch gelatinization temperatures and reduced its enthalpy value (ΔH). The addition of NH increased the viscosity and thickening of taro starch, facilitating shearing and thinning. NH binds to TS via hydrogen bonds and promotes the formation of certain crystalline regions in taro starch. SEM images revealed that the surface of NH-TS complexes became looser with the increasing addition of NH. The digestibility results demonstrated that the increase in NH (from 0.1% to 1.1%, weight based on starch) could raise RS (resistant starch) from 21.66% to 27.75% and reduce RDS (rapidly digestible starch) from 33.51% to 26.76% in taro starch. Our work provided a theoretical reference for the NH-taro starch complex's modification of physicochemical properties and in vitro digestibility with potential in food and non-food applications.
Collapse
Affiliation(s)
- Youming Zuo
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirui He
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weidong Yang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chongde Sun
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Tsirigotis-Maniecka M, Zaczyńska E, Czarny A, Jadczyk P, Umińska-Wasiluk B, Gancarz R, Pawlaczyk-Graja I. Antioxidant and Protective Effects of the Polyphenolic Glycoconjugate from Agrimonia eupatoria L. Herb in the Prevention of Inflammation in Human Cells. J Funct Biomater 2023; 14:jfb14040182. [PMID: 37103272 PMCID: PMC10142550 DOI: 10.3390/jfb14040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Herein, structural and biological studies of a complex biopolymer (polyphenolic glycoconjugate) isolated from the flowering parts of Agrimonia eupatoria L. (AE) are presented. Spectroscopic analyses (UV–Vis and 1H NMR) of the aglycone component of AE confirmed that it consists mainly of aromatic and aliphatic structures characteristic of polyphenols. AE showed significant free radical elimination activity, i.e., ABTS+ and DPPH·, and was an effective copper reducing agent in the CUPRAC test, eventually proving that AE is a powerful antioxidant. AE was nontoxic to human lung adenocarcinoma cells (A549) and mouse fibroblasts (L929) and was nongenotoxic to S. typhimurium bacterial strains TA98 and TA100. Moreover, AE did not induce the release of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor (TNF-α) by human pulmonary vein (HPVE-26) endothelial cells or human peripheral blood mononuclear cells (PBMCs). These findings correlated with the low activation of the transcription factor NF-κB in these cells, which plays an important role in the regulation of the expression of genes responsible for inflammatory mediator synthesis. The AE properties described here suggest that it may be useful for protecting cells from the adverse consequences of oxidative stress and could be valuable as a biomaterial for surface functionalization.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
- Correspondence: ; Tel.: +48-713203849
| | - Ewa Zaczyńska
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland
| | - Anna Czarny
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland
| | - Piotr Jadczyk
- Department of Environmental Protection Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Barbara Umińska-Wasiluk
- Department of Environmental Protection Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Roman Gancarz
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Izabela Pawlaczyk-Graja
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| |
Collapse
|
10
|
Radovanović K, Gavarić N, Aćimović M. Anti-Inflammatory Properties of Plants from Serbian Traditional Medicine. Life (Basel) 2023; 13:life13040874. [PMID: 37109403 PMCID: PMC10146037 DOI: 10.3390/life13040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammation is a natural protective response of the human body to a variety of hostile agents and noxious stimuli. Standard anti-inflammatory therapy includes drugs whose usage is associated with a number of side effects. Since ancient times, natural compounds have been used for the treatment of inflammation. Traditionally, the use of medicinal plants is considered safe, inexpensive, and widely acceptable. In Serbia, traditional medicine, based on the strong belief in the power of medicinal herbs, is the widespread form of treatment. This is supported by the fact that Serbia is classified as one of 158 world centers of biodiversity, which confirms that this country is a treasure of medicinal herbs. Some of the most used herbs for the treatment of inflammations of various causes in Serbian tradition are yarrow, common agrimony, couch grass, onion, garlic, marshmallow, common birch, calendula, liquorice, walnut, St. John’s wort, chamomile, peppermint, white willow, sage, and many others. The biological activity and anti-inflammatory effect of selected plants are attributed to different groups of secondary biomolecules such as flavonoids, phenolic acids, sterols, terpenoids, sesquiterpenes, and tannins. This paper provides an overview of plants with traditional anti-inflammatory use in Serbia with reference to available studies that examined this effect. Plants used in traditional medicine could be a powerful source for the development of new remedies. Therefore intensive research on the bioactive potential of medicinal plants in each region should be the focus of scientists around the world.
Collapse
|
11
|
Balážová Ľ, Wolaschka T, Rohaľová S, Daneu N, Stahorský M, Salayová A, Tkáčiková Ľ, Eftimová J. In Situ Gel with Silver Nanoparticles Prepared Using Agrimonia eupatoria L. Shows Antibacterial Activity. Life (Basel) 2023; 13:life13020573. [PMID: 36836930 PMCID: PMC9966964 DOI: 10.3390/life13020573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Silver nanoparticles (Ag NPs) with antibacterial activity can be prepared in different ways. In our case, we used ecological green synthesis with Agrimonia eupatoria L. The plant extract was used with Ag NPs for the first time to prepare termosensitive in situ gels (ISGs). Such gels are used to heal human or animal skin and mucous membranes, as they can change from a liquid to solid state after application. Ag NPs were characterized with various techniques (FTIR, TEM, size distribution, zeta potential) and their antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. In accordance with the TEM data, we prepared monodispersed spherical Ag NPs with an average size of about 20 nm. Organic active compounds from Agrimonia eupatoria L. were found on their surfaces using FTIR spectroscopy. Surprisingly, only the in situ gel with Ag NPs showed antibacterial activity against Escherichia coli, while Ag NPs alone did not. Ag NPs prepared via green synthesis using plants with medicinal properties and incorporated into ISGs have great potential for wound healing due to the antibacterial activity of Ag NPs and the dermatological activity of organic substances from plants.
Collapse
Affiliation(s)
- Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
- Correspondence: ; Tel.: +421-907-536-280
| | - Tomáš Wolaschka
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| | - Simona Rohaľová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 601 77 Brno, Czech Republic
| | - Nina Daneu
- Advanced Materials Department, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Martin Stahorský
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Aneta Salayová
- Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| | - Jarmila Eftimová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| |
Collapse
|