1
|
Nourozi E, Hedayati A, Madani H, Hosseini B, Hemmaty S. In vitro synthetic polyploidization and enhancement of anticancer compounds in Catharanthus Roseus (L.) G. Don important cultivars. Sci Rep 2025; 15:6563. [PMID: 39994440 PMCID: PMC11850637 DOI: 10.1038/s41598-025-91103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Catharanthus roseus (L.) G. Don is a plant belonging to the Apocynaceae family, which is native to Madagascar. The important alkaloids isolated from C. roseus are vinblastine and vincristine, both of which are important early indole-based anticancer drugs. Induction of polyploidy using mutagenic agents serves as an efficient method to improve the genetic potential of cells to synthesize secondary metabolites in medicinal plants. The variety of traits that occur through polyploidy induction, depends on the plant's species and genotypes. In this study, in vitro seedlings of 'Red Really' and 'Polka Dot' cultivars of C. roseus (for the first time) in the cotyledonary stage, were treated with various concentrations of colchicine (0, 0.05, 0.1, 0.2 and 0.5%) at three exposure time (24, 48 and 72 h). To distinguish the ploidy level of seedlings, morphological changes as well as, microscopic examinations, flow cytometry and chromosome counting were performed. In our experiment, the concentration and exposure time of colchicine and their interaction affected the tetraploidy percentage. Karyotype analysis suggested that the number of chromosomes in the diploid species was 2n = 2x = 16 and tetraploid plants contained 2n = 4x = 32. The maximum tetraploidy frequency was observed at 0.2% colchicine for 48 h in 'Red Really' and 0.1% colchicine for 48 h in 'Polka Dot'. The polyploid seedlings produced visible changes in plant height, leaf length and width, plant fresh and dry weight, stem and flower diameter compared to the control. Artificial ploidy manipulation caused significant changes in the chlorophyll and carotenoid content in polyploid seedlings compared to diploids. Also, vincristine, vinblastine, catharanthine and vindoline content increased 82.2, 80.9, 44.3 and 71.2% in Red Really as well as 64.7, 31, 48.2 and 95.3% in Polka Dot, respectively, compared to diploid plants. Increasing the ploidy level as an effective breeding strategy is noticeable for commercially producing these valuable medicinal compounds. The resulting polyploid lines have the potential to be used in breeding programs to develop C. roseus cultivars.
Collapse
Grants
- 1401 Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, Urmia, Iran
- 1401 Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, Urmia, Iran
- 1401 Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, Urmia, Iran
Collapse
Affiliation(s)
- Elnaz Nourozi
- Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, P.O. Box: 165, Urmia, Iran.
| | - Ahad Hedayati
- Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, P.O. Box: 165, Urmia, Iran.
| | - Hadi Madani
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Syavash Hemmaty
- Academic Center for Education, Culture, and Research (ACECR), West Azarbayjan Branch, P.O. Box: 165, Urmia, Iran
| |
Collapse
|
2
|
Luo X, Liu Y, Lei Y, He Z, Gong X, Ye M, Xiao Q. Genetic Diversity Analysis and Polyploid Induction Identification of Idesia polycarpa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3394. [PMID: 39683187 DOI: 10.3390/plants13233394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Idesia polycarpa from Sichuan is a valuable germplasm with high economic potential, but it faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a promising parent due to its high oil content (38.5%) and red fruits. Polyploid induction via adding 0.50% colchicine to Murashige and Skoog (MS) medium yielded 520 IpHT1 mutagenized seedlings. Subsequently, flow cytometry (FCM) was performed on 401 morphologically variant seedlings which had been initially screened, resulting in the identification of 15 suspected triploids, 35 suspected tetraploids, and 3 chimeras. Furthermore, fluorescence in situ hybridization (FISH) analysis found that the probe (AG3T3)3 had terminal signals at both ends of each chromosome, allowing for the counting of 42 chromosomes in diploids and 84 in tetraploids. The probe 5S rDNA showed 2, 3, and 4 hybridization signals in the interphase nuclei of diploid, triploid, and tetraploid cells, respectively, but the probe (GAA)6 failed to produce any signal on I. polycarpa chromosomes. Ultimately, 18 polyploids were selected, including 7 triploids and 11 tetraploids. Triploids and tetraploids showed significant leaf morphological and physiological differences from diploids. Consequently, this study successfully established a polyploid breeding system for I. polycarpa, thereby enhancing its genetic diversity and breeding potential.
Collapse
Affiliation(s)
- Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunke Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China
| | - Yuting Lei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhoujian He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Gong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Ye
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiangang Xiao
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
3
|
Ghouri F, Shahid MJ, Zhong M, Zia MA, Alomrani SO, Liu J, Sun L, Ali S, Liu X, Shahid MQ. Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO 2 nanoparticles on gene expression, cytological and physiological changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168709. [PMID: 37992838 DOI: 10.1016/j.scitotenv.2023.168709] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Lead is a very toxic and futile heavy metal for rice plants because of its injurious effects on plant growth and metabolic processes. Polyploidy or whole genome doubling increases the ability of plants to withstand biotic and abiotic stress. Considering the beneficial effects of nanoparticles and tetraploid rice, this research was conducted to examine the effectiveness of tetraploid and titanium dioxide nanoparticles (TiO2 NPs) in mitigating the toxic effects of lead. A diploid (E22-2x) and it's tetraploid (T-42) rice line were treated with Pb (200 μM) and TiO2 NPs (15 mg L-1). Lead toxicity dramatically reduced shoot length (16 % and 4 %) and root length (17 % and 9 %), biological yield (55 % and 36 %), and photosynthetic activity, as evidenced by lower levels of chlorophyll a and b (30 % and 9 %) in E-22 and T-42 rice cultivars compared to the control rice plants, respectively. Furthermore, lead toxicity amplified the levels of reactive oxygen species (ROS), such as malondialdehyde and H2O2, while decreasing activities of all antioxidant enzymes, such as superoxidase, peroxidase, and glutathione predominately in the diploid cultivar. Transmission electron microscopy and semi-thin section observations revealed that Pb-treated cells in E22-2x had more cell abnormalities than T-42, such as irregularly shaped mitochondria, cell wall, and reduced root cell size. Polyploidy and TiO2 reduced Pb uptake in rice cultivars and expression levels of metal transporter genes such as OsHMA9 and OsNRAMP5. According to the findings, genome doubling alleviates Pb toxicity by reducing Pb accumulation, ROS, and cell damage. Tetraploid rice can withstand the toxic effect of Pb better than diploid rice, and TiO2 NPs can alleviate the toxic impact of Pb. Our study findings act as a roadmap for future research endeavours, directing the focus toward risk management and assessing long-term impacts to balance environmental sustainability and agricultural growth.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Azam Zia
- Department of Computer Science, University of Agriculture, Faisalabad 38800, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Ghouri F, Shahid MJ, Liu J, Sun L, Riaz M, Imran M, Ali S, Liu X, Shahid MQ. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132019. [PMID: 37437486 DOI: 10.1016/j.jhazmat.2023.132019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Genome doubling in plants induces physiological and molecular changes to withstand environmental stress. Diploid rice (D-2x) and its tetraploid (T-4x) plants were treated with 25 μM Arsenic (As) and 15 mg L-1 TiO2 nanoparticles (NPs), and results indicated decreased growth and photosynthetic activity with high accumulation of reactive oxygen species (ROS) due to the As-toxicity in rice lines, significantly in D-2x rice plants. The treatment of As-contaminated rice with TiO2 NPs resulted in increased root length (8.17%) and chlorophyll AB (13.28%) and decreased electrolyte leakage (21.76%) and H2O2 (17.65%) contents than its counterpart diploid rice. Moreover, TiO2 NPs improved the activity of peroxidase, catalase, glutathione, and superoxide dismutase and reduced lipid peroxidation due to lower ROS production in D-2x and T-4x under As toxicity. Transcriptome analysis revealed abrupt changes in the expression levels of key signaling heat shock proteins, tubulin, aquaporins, As, and metal transporters under As toxicity in T-4x and D-2x lines. The KEGG and GO studies highlighted the striking distinctions between rice lines under As-stress in glutathione metabolism, H2O2 catabolic process, MAPK signaling pathway, and carotenoid biosynthesis terms, revealing consistency between physiological and molecular results. Root cells from D-2x rice were significantly more distorted by As poisoning than those from 4x rice, and cell organelles, such as mitochondria and endoplasmic reticulum, were changed or deformed. These findings proved the superiority of tetraploid rice lines over their diploid counterpart in coping with As-stress.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wu H, Jiang L, Li J, Lu M, An H. Polyploid Induction and Identification of Rosa roxburghii f. eseiosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112194. [PMID: 37299173 DOI: 10.3390/plants12112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Rosa roxburghii f. eseiosa Ku is a variety of Rosa roxburghii, with two known genotypes: Wuci 1 and Wuci 2. The lack of prickle on the peel of R. roxburghii f. eseiosa makes it easy to pick and process, but its fruit size is small. Therefore, we aim to induce polyploidy in order to obtain a larger fruit variety of R. roxburghii f. eseiosa. In this study, current-year stems of Wuci 1 and Wuci 2 were used as materials for polyploid induction, which was carried out through colchicine treatment coupled with tissue culture and rapid propagation technology. Impregnation and smearing methods were effectively used to produce polyploids. Using flow cytometry and a chromosome counting method, it was found that one autotetraploid of Wuci 1 (2n = 4x = 28) was obtained by the impregnation method before primary culture, with a variation rate of 1.11%. Meanwhile, seven Wuci 2 bud mutation tetraploids (2n = 4x = 28) were produced by smearing methods during the training seedling stage. When tissue-culture seedlings were treated with 20 mg/L colchicine for 15 days, the highest polyploidy rate was up to 60%. Morphological differences between different ploidys were observed. The side leaflet shape index, guard cell length, and stomatal length of the Wuci 1 tetraploid were significantly different from those of the Wuci 1 diploid. The terminal leaflet width, terminal leaflet shape index, side leaflet length, side leaflet width, guard cell length, guard cell width, stomatal length, and stomatal width of the Wuci 2 tetraploid were significantly different from those of the Wuci 2 diploid. Additionally, the leaf color of the Wuci 1 and Wuci 2 tetraploids changed from light to dark, with an initial decrease in chlorophyll content followed by an increase. In summary, this study established an effective method for inducing polyploids in R. roxburghii f. eseiosa, which could provide a foundation for the breeding and development of new genetic resources for R. roxburghii f. eseiosa and other R. roxburghii varieties in the future.
Collapse
Affiliation(s)
- Huijing Wu
- Agricultural College, Guizhou University, Guiyang 550025, China
| | - Lanlan Jiang
- Agricultural College, Guizhou University, Guiyang 550025, China
| | - Jin'e Li
- Agricultural College, Guizhou University, Guiyang 550025, China
| | - Min Lu
- Agricultural College, Guizhou University, Guiyang 550025, China
| | - Huaming An
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
| |
Collapse
|
6
|
Nikolova M, Aneva I, Zhelev P, Semerdjieva I, Zheljazkov VD, Vladimirov V, Stoyanov S, Berkov S, Yankova-Tsvetkova E. Metabolic Profiles, Genetic Diversity, and Genome Size of Bulgarian Population of Alkanna tinctoria. PLANTS (BASEL, SWITZERLAND) 2022; 12:111. [PMID: 36616241 PMCID: PMC9823991 DOI: 10.3390/plants12010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Alkanna tinctoria (L.) Tausch Boraginaceae is a medicinal plant whose root is used for its antimicrobial and anti-inflammatory properties. A. tinctoria roots have been subject to numerous studies. However, the aerial parts have been explored less. The objective of the present study was to compare the chemical profile of aerial parts and roots as well as the total alkannin content in roots of 11 populations of the species from different floristic regions of Bulgaria. Methanolic extracts from 22 samples were analyzed by GC/MS. Phenolic, fatty, and organic acids, sterols, polyols, fatty alcohols, and sugars were identified. Ononitol (4-O-methyl-myo-inositol) was found as the main compound in the aerial parts. The total alkannin content in the roots was evaluated by the spectrophotometric method and compared with that of the commercial product. Populations with high alkannin content and rich in other bioactive compounds were identified. A relatively low genetic diversity in the studied populations was observed. The present study is the first comprehensive study on metabolite profiles and genetic diversity of the Bulgarian populations of A. tinctoria. The occurrence of ononitol in the aerial parts of the species is reported for the first time, as well as the phenolic acid profiles of the species in both aerial parts and roots. The results showed that aerial parts of the plant are also promising for use as a source of valuable biologically active substances.
Collapse
Affiliation(s)
- Milena Nikolova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ina Aneva
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, University of Forestry, 1797 Sofia, Bulgaria
| | - Ivanka Semerdjieva
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Botany and Agrometeorology, Agricultural University, Mendeleev 12, 4000 Plovdiv, Bulgaria
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way, 109 Crop Science, Building, Corvallis, OR 97331, USA
| | - Vladimir Vladimirov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Botanical Garden, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Stoyan Stoyanov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Strahil Berkov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Yankova-Tsvetkova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|