1
|
Meena VK, Thribhuvan R, Dinkar V, Bhatt A, Pandey S, Abhinav, Ahmad D, Kumar A, Singh A. Haplotype breeding: fast-track the crop improvements. PLANTA 2025; 261:51. [PMID: 39891745 DOI: 10.1007/s00425-025-04622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
MAIN CONCLUSION Haplotype-based breeding unleashed the genetic variations of unexplored germplasms and integration with recent genomics tools accelerated the genetic gain and address the present challenges of food security by climate change. Climate change is linked to unforeseen abiotic stresses and changes in the patterns of pests and diseases. Hence, it is necessary to use novel methods to detect genetic variations to mitigate the adverse effects on crops by climate change. Genomic-assisted breeding methods are strategies that improve the efficiency of breeding cereal crops in a dynamic environment. These methods detect differences in the structure of single nucleotide polymorphisms (SNPs) throughout the population. The decrease in sequencing costs has enabled the thorough sequencing of crop genomes, resulting in the discovery of millions of SNPs. By using statistical tests, it is possible to integrate these SNPs into a limited number of haplotype blocks. This allows for a more comprehensive analysis of how variation is distributed and segregated within a population. Therefore, the use of haplotype-based breeding shows great potential as a tool for creating tailored crop varieties. The process entails the identification of superior haplotypes and their use in breeding operations. The haplotype-based breeding (HBB) technique utilizes genome sequence data to identify specific allelic variations that accelerate the breeding cycle and overcome linkage drag difficulties. This study aims to present the idea of HBB, examine the connection between haplotype breeding and conventional breeding, and analyze the benefits and current advancements of HBB, with a specific focus on cereal crops.
Collapse
Affiliation(s)
- Vijay Kamal Meena
- Agriculture Research Substation, Agriculture University (Jodhpur), Sumerpur, Pali, Rajasthan, 306902, India
| | - R Thribhuvan
- Division of Crop Improvement, ICAR-CRIJAF, Barrackpore, Kolkata, West Bengal, 700121, India
| | - Vishal Dinkar
- ICAR-Indian Institute of Pulse Research, Kanpur, UP, 208024, India
| | - Ashish Bhatt
- Govind Ballabh Pant University of Agriculture and Technology, US Nagar, Pantnagar, Uttarakhand, 263145, India
| | - Saurabh Pandey
- Department of Plant Molecular Biology and Biotechnology, IGKV, Raipur, Chhattisgarh, 492012, India
| | - Abhinav
- Motilal Nehru National Institute of Technology, Prayagraj, UP, 211004, India
| | - Dilshad Ahmad
- Department of Centre of Excellence on Soybean Processing and Utilisation, ICAR-Central Institute of Agricultural Engineering, Bhopal, MP, 462038, India
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, College of Agriculture (CAU, Imphal), Kyrdemkulai, Meghalaya, 793104, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| |
Collapse
|
2
|
Fourquet L, Barber T, Campos-Mantello C, Howell P, Orman-Ligeza B, Percival-Alwyn L, Rose GA, Sheehan H, Wright TIC, Longin F, Würschum T, Novoselovic D, Greenland AJ, Mackay IJ, Cockram J, Bentley AR. An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:277. [PMID: 39576319 PMCID: PMC11584503 DOI: 10.1007/s00122-024-04787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.) using an eight-founder multi-parent advanced generation intercross (MAGIC) population. Flowering time data was collected from field trials across six growing seasons in the United Kingdom, followed by genetic analysis using a combination of linear modelling, simple interval mapping and composite interval mapping, using either single markers or founder haplotype probabilities. We detected 57 quantitative trait loci (QTL) across three growth stages linked to flowering time, of which 17 QTL were identified only when the major photoperiod response locus Ppd-D1 was included as a covariate. Of the 57 loci, ten were identified using all genetic mapping approaches and classified as 'major' QTL, including homoeologous loci on chromosomes 1B and 1D, and 4A and 4B. Additional Earliness per se flowering time QTL were identified, along with growth stage- and year-specific effects. Furthermore, six of the main-effect QTL were found to interact epistatically with Ppd-D1. Finally, we exploited residual heterozygosity in the MAGIC recombinant inbred lines to Mendelize the Earliness per se QTL QFt.niab-5A.03, which was confirmed to modulate flowering time by at least four days. This work provides detailed understanding of the genetic control of phenological variation within varieties relevant to the north-western European wheat genepool, aiding informed manipulation of flowering time in wheat breeding.
Collapse
Affiliation(s)
| | - Tobias Barber
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Phil Howell
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Gemma A Rose
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Friedrich Longin
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | | | | | - Ian J Mackay
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | | |
Collapse
|
3
|
Dwivedi SL, Heslop‐Harrison P, Amas J, Ortiz R, Edwards D. Epistasis and pleiotropy-induced variation for plant breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2788-2807. [PMID: 38875130 PMCID: PMC11536456 DOI: 10.1111/pbi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.
Collapse
Affiliation(s)
| | - Pat Heslop‐Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Department of Genetics and Genome Biology, Institute for Environmental FuturesUniversity of LeicesterLeicesterUK
| | - Junrey Amas
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Rodomiro Ortiz
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - David Edwards
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
4
|
Zhang Z, Peng C, Xu W, Li Y, Qi X, Zhao M. Genome-wide association study of agronomic traits related to nitrogen use efficiency in Henan wheat. BMC Genomics 2024; 25:7. [PMID: 38166525 PMCID: PMC10759698 DOI: 10.1186/s12864-023-09922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Nitrogen use efficiency (NUE) is closely related to crop yield and nitrogen fertilizer application rate. Although NUE is susceptible to environments, quantitative trait nucleotides (QTNs) for NUE in wheat germplasm populations have been rarely reported in genome-wide associated study. RESULTS In this study, 244 wheat accessions were phenotyped by three NUE-related traits in three environments and genotyped by 203,224 SNPs. All the phenotypes for each trait were used to associate with all the genotypes of these SNP markers for identifying QTNs and QTN-by-environment interactions via 3VmrMLM. Among 279 QTNs and one QTN-by-environment interaction for low nitrogen tolerance, 33 were stably identified, especially, one large QTN (r2 > 10%), qPHR3A.2, was newly identified for plant height ratio in one environment and multi-environment joint analysis. Among 52 genes around qPHR3A.2, four genes (TraesCS3A01G101900, TraesCS3A01G102200, TraesCS3A01G104100, and TraesCS3A01G105400) were found to be differentially expressed in low-nitrogen-tolerant wheat genotypes, while TaCLH2 (TraesCS3A01G101900) was putatively involved in porphyrin metabolism in KEGG enrichment analyses. CONCLUSIONS This study identified valuable candidate gene for low-N-tolerant wheat breeding and provides new insights into the genetic basis of low N tolerance in wheat.
Collapse
Affiliation(s)
- Zaicheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Chaojun Peng
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Weigang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China.
| | - Yan Li
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Xueli Qi
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Mingzhong Zhao
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
5
|
Mini A, Touzy G, Beauchêne K, Cohan JP, Heumez E, Oury FX, Rincent R, Lafarge S, Le Gouis J. Genetic regions determine tolerance to nitrogen deficiency in European elite bread wheats grown under contrasting nitrogen stress scenarios. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:218. [PMID: 37815653 DOI: 10.1007/s00122-023-04468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
KEY MESSAGE Clustering 24 environments in four contrasting nitrogen stress scenarios enabled the detection of genetic regions determining tolerance to nitrogen deficiency in European elite bread wheats. Increasing the nitrogen use efficiency of wheat varieties is an important goal for breeding. However, most genetic studies of wheat grown at different nitrogen levels in the field report significant interactions with the genotype. The chromosomal regions possibly involved in these interactions are largely unknown. The objective of this study was to quantify the response of elite bread wheat cultivars to different nitrogen field stress scenarios and identify genomic regions involved in this response. For this purpose, 212 elite bread wheat varieties were grown in a multi-environment trial at different nitrogen levels. Genomic regions associated with grain yield, protein concentration and grain protein deviation responses to nitrogen deficiency were identified. Environments were clustered according to adjusted means for grain yield, yield components and grain protein concentration. Four nitrogen availability scenarios were identified: optimal condition, moderate early deficiency, severe late deficiency, and severe continuous deficiency. A large range of tolerance to nitrogen deficiency was observed among varieties, which were ranked differently in different nitrogen deficiency scenarios. The well-known negative correlation between grain yield and grain protein concentration also existed between their respective tolerance indices. Interestingly, the tolerance indices for grain yield and grain protein deviation were either null or weakly positive meaning that breeding for the two traits should be less difficult than expected. Twenty-two QTL regions were identified for the tolerance indices. By selecting associated markers, these regions may be selected separately or combined to improve the tolerance to N deficiency within a breeding programme.
Collapse
Affiliation(s)
- Agathe Mini
- UMR GDEC, INRAE, Université Clermont Auvergne, 63100, Clermont-Ferrand, France
- Biogemma, Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Gaëtan Touzy
- Biogemma, Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
- Arvalis-Institut du Végétal, 41240, Beauce la Romaine, France
| | - Katia Beauchêne
- Arvalis-Institut du Végétal, 41240, Beauce la Romaine, France
| | - Jean-Pierre Cohan
- Arvalis-Institut du Végétal, Station Expérimentale, 91190, Villiers le Bâcle, France
| | | | | | - Renaud Rincent
- UMR GDEC, INRAE, Université Clermont Auvergne, 63100, Clermont-Ferrand, France
| | - Stéphane Lafarge
- Biogemma, Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Jacques Le Gouis
- UMR GDEC, INRAE, Université Clermont Auvergne, 63100, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Schmidt L, Jacobs J, Schmutzer T, Alqudah AM, Sannemann W, Pillen K, Maurer A. Identifying genomic regions determining shoot and root traits related to nitrogen uptake efficiency in a multiparent advanced generation intercross (MAGIC) winter wheat population in a high-throughput phenotyping facility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111656. [PMID: 36841338 DOI: 10.1016/j.plantsci.2023.111656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In the context of a continuously increasing human population that needs to be fed, with environmental protection in mind, nitrogen use efficiency (NUE) improvement is becoming very important. To understand the natural variation of traits linked to nitrogen uptake efficiency (UPE), one component of NUE, the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting nitrogen (N) levels in a high-throughput phenotyping facility for six weeks. Three biomass-related, three root-related, and two reflectance-related traits were measured weekly under each treatment. Subsequently, the population was genetically analysed using a total of 13,060 polymorphic haplotypes and singular SNPs for a genome-wide association study (GWAS). In total, we detected 543 quantitative trait loci (QTL) across all time points and traits, which were pooled into 42 stable QTL (sQTL; present in at least three of the six weeks). Besides Rht-B1 and Rht-D1, candidate genes playing a role in gibberellic acid-regulated growth and nitrate transporter genes from the NPF gene family, like NRT 1.1, were linked to sQTL. Two novel sQTL on chromosomes 5 A and 6D showed pleiotropic effects on several traits. The high number of N-specific sQTL indicates that selection for UPE is useful specifically under N-limited conditions.
Collapse
Affiliation(s)
- Laura Schmidt
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - John Jacobs
- BASF BBCC Innovation Center Gent, 9052 Gent, Belgium
| | - Thomas Schmutzer
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Ahmad M Alqudah
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany; Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Wiebke Sannemann
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
7
|
Schmidt L, Nagel KA, Galinski A, Sannemann W, Pillen K, Maurer A. Unraveling Genomic Regions Controlling Root Traits as a Function of Nitrogen Availability in the MAGIC Wheat Population WM-800. PLANTS (BASEL, SWITZERLAND) 2022; 11:3520. [PMID: 36559632 PMCID: PMC9785272 DOI: 10.3390/plants11243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
An ever-growing world population demands to be fed in the future and environmental protection and climate change need to be taken into account. An important factor here is nitrogen uptake efficiency (NUpE), which is influenced by the root system (the interface between plant and soil). To understand the natural variation of root system architecture (RSA) as a function of nitrogen (N) availability, a subset of the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting N treatments in a high-throughput phenotyping system at the seedling stage. Fourteen root and shoot traits were measured. Subsequently, these traits were genetically analyzed using 13,060 polymorphic haplotypes and SNPs in a genome-wide association study (GWAS). In total, 64 quantitative trait loci (QTL) were detected; 60 of them were N treatment specific. Candidate genes for the detected QTL included NRT1.1 and genes involved in stress signaling under N-, whereas candidate genes under N+ were more associated with general growth, such as mei2 and TaWOX11b. This finding may indicate (i) a disparity of the genetic control of root development under low and high N supply and, furthermore, (ii) the need for an N specific selection of genes and genotypes in breeding new wheat cultivars with improved NUpE.
Collapse
Affiliation(s)
- Laura Schmidt
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Kerstin A. Nagel
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Anna Galinski
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Wiebke Sannemann
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| |
Collapse
|