1
|
Senthil Kumar CM, D'Silva S, Praveena R, Kaprakkaden A, Athira Krishnan LR, Balaji Rajkumar M, Srinivasan V, Dinesh R. Zinc solubilization and organic acid production by the entomopathogenic fungus, Metarhizium pingshaense sheds light on its key ecological role in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171348. [PMID: 38438046 DOI: 10.1016/j.scitotenv.2024.171348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
We report for the first-time higher zinc (Zn) solubilization efficiency and plant growth promotion by an entomopathogenic fungus (EPF), Metarhizium pingshaense IISR-EPF-14, which was earlier isolated from Conogethes punctiferalis, a pest of global importance. The Zn solubilizing efficiency of the fungus varied depending on the type of insoluble source of Zn used, which was observed to be 1.6 times higher in Zn3(PO4)2-amended media compared to ZnO media. In liquid media, there was a 6.2-fold increase in available Zn in ZnO-amended media, whereas a 20.2-fold increase in available Zn was recorded in Zn3(PO4)2 medium. We ascribe the production of various organic acids such as gluconic, keto-gluconic, oxalic, tartaric, malonic, succinic and formic acids, which in general, interact with insoluble Zn sources and make them soluble by forming metal cations and displacing anions as the major mechanism for Zn solubilization by M. pingshaense. However, the type and amount of organic acid produced in the media varied depending on the source of Zn used and the incubation period. Application of the fungus alone and in combination with insoluble Zn sources enhanced various plant growth parameters in rice and cardamom plants. Moreover, the uptake of Zn in rice plants was enhanced up to ~2.5-fold by fungal application. The fungus also exhibited various other plant growth-promoting traits, such as production of Indole-3-acetic acid, ammonia, siderophores, solubilization of mineral phosphate, and production of hydrolytic enzymes such as α-amylase, protease, and pectinase. Hence, apart from its use as a biological control agent, M. pingshaense has the potential to be used as a bio-fortifier to enhance the solubilization and uptake of Zn from nutrient poor soils under field conditions. Our findings shed light on the broader ecological role played by this fungus and widen its scope for utilization in sustainable agriculture.
Collapse
Affiliation(s)
- C M Senthil Kumar
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India.
| | - Sharon D'Silva
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - R Praveena
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - Anees Kaprakkaden
- Division of Crop Production and Post-Harvest Technology, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - L R Athira Krishnan
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - M Balaji Rajkumar
- ICAR - Indian Institute of Spices Research, Regional Station, Appangala, Madikeri - 571 201, Karnataka, India
| | - V Srinivasan
- Division of Crop Production and Post-Harvest Technology, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - R Dinesh
- Division of Crop Production and Post-Harvest Technology, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| |
Collapse
|
2
|
Quesada-Moraga E, Garrido-Jurado I, González-Mas N, Yousef-Yousef M. Ecosystem services of entomopathogenic ascomycetes. J Invertebr Pathol 2023; 201:108015. [PMID: 37924859 DOI: 10.1016/j.jip.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Entomopathogenic ascomycetes (EA) are an important part of the microbiota in most terrestrial ecosystems, where they can be found regulating natural populations of arthropod pests in both epigeous and hypogeous habitats while also establishing unique relationships with plants. These fungi offer direct benefits to agriculture and human welfare. In the present work, we conducted a systematic review to comprehensively assess the range of ecosystem services provided by EA, including direct and indirect pest biocontrol, plant growth promotion, plant defense against other biotic and abiotic stresses, nutrient cycling, and the production of new bioactive compounds with agricultural, pharmaceutical and medical importance. Moreover, EA are compatible with the ecosystem services provided by other microbial and macrobial biocontrol agents. This systematic review identified the need for future research to focus on evaluating the economic value of the ecological services provided by EA with a special emphasis on hypocrealean fungi. This evaluation is essential not only for the conservation but also for better regulation and exploitation of the benefits of EA in promoting agricultural sustainability, reducing the use of chemicals that enter the environment, and minimizing the negative impacts of crop protection on the carbon footprint and human health.
Collapse
Affiliation(s)
- Enrique Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain.
| | - Inmaculada Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Natalia González-Mas
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Meelad Yousef-Yousef
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| |
Collapse
|