1
|
Ghazi-Yaker A, Kraak B, Houbraken J, Nabti EH, Cruz C, Saadoun N, Houali K. In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi. Microorganisms 2024; 12:2671. [PMID: 39770873 PMCID: PMC11728511 DOI: 10.3390/microorganisms12122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
The exploration of new pharmacological compounds from endophytic fungi offers infinite possibilities. The aim of this study was to evaluate the antibacterial and antioxidant activities of extracts from the leaves of Ziziphus lotus and five of its endophytic fungi and investigate the chemical diversity of the secondary metabolites produced. Isolated, purified, and molecularly identified endophytes and plant leaves were subjected to ethyl acetate extraction. The antibacterial potential of the extracts was assessed by the disc diffusion method against five bacterial strains: Staphylococcus aureus ATCC 25923; Staphylococcus aureus MU50; Enterococcus faecalis WDCM00009; Escherichia coli ATCC 25922; and Pseudomonas aeruginosa ATCC 27853. DPPH and reducing power tests were performed to assess antioxidant potential. GC-MS analysis was used to identify volatile compounds in extracts. Fungal endophytes were identified as Aspergillus cavernicola, Aspergillus persii, Alternaria alternata, Cladosporium asperlatum, and Fusarium incarnatum-equiseti complex, with respective accession numbers DTO 412-G6, DTO 412-I5, DTO 413-E7, DTO 412-G4, and DTO 414-I2. GC-MS analysis revealed a large number of bioactive compounds. All extracts showed antibacterial activity against at least two of the bacteria tested, and most showed antioxidant activity. The Aspergillus cavernicola extract stood out for its higher phenolic content and higher antioxidant and antibacterial activities in all tests.
Collapse
Affiliation(s)
- Amel Ghazi-Yaker
- Natural Resources Laboratory, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri Univesity, Tizi-Ouzou 15000, Algeria; (A.G.-Y.); (N.S.)
- Laboratory of Analytic Biochemistry and Biotechnology (LABAB), Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University, Tizi-Ouzou 15000, Algeria
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 CT Utrecht, The Netherlands; (B.K.); (J.H.)
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 CT Utrecht, The Netherlands; (B.K.); (J.H.)
| | - El-hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Cristina Cruz
- cE3c—Center for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal;
| | - Noria Saadoun
- Natural Resources Laboratory, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri Univesity, Tizi-Ouzou 15000, Algeria; (A.G.-Y.); (N.S.)
| | - Karim Houali
- Laboratory of Analytic Biochemistry and Biotechnology (LABAB), Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University, Tizi-Ouzou 15000, Algeria
| |
Collapse
|
2
|
Ogofure AG, Pelo SP, Green E. Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens. Molecules 2024; 29:4924. [PMID: 39459292 PMCID: PMC11510704 DOI: 10.3390/molecules29204924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Fungal endophytes, symbiotic microorganisms residing within plants, are renowned for producing bioactive secondary metabolites with diverse beneficial properties. We investigated the antimicrobial potential of fungal endophytes isolated from Solanum mauritianum, an invasive weed, against clinically significant bacterial pathogens. Selected fungal endophytes (Penicillium chrysogenum, Fusarium sp., and Paracamarosporium leucadendri) were isolated from the plant's leaves and fruits. Their crude extracts were tested against various referenced strains, such as Mycobacterium species (M. smegmatis ATCC 607 and M. bovis ATCC 27290), Staphylococcus aureus ATCC 6571, Bacillus subtilis ATCC 11774, Klebsiella species (K. pneumoniae ATCC 10031 and K. oxytoca ATCC 8724), Escherichia coli ATCC 10536, and Pseudomonas aeruginosa ATCC 10145, using the Kirby-Bauer disk diffusion method. Resazurin Microtiter Assay was used for the determination of the minimum inhibitory concentration. The chemical nature of the secondary metabolites in the crude extracts produced by fungal endophytes was evaluated using high-resolution liquid chromatography-mass spectrometry (LC-MS) using water and acetonitrile gradient. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS) was employed for untargeted metabolomics. LC-QTOF-MS/MS identified 63 bioactive compounds across the three endophytes. P. chrysogenum had the highest activity against S. aureus and M. smegmatis (1.15 mg/mL and 0.02 mg/mL, respectively), while P. leucadendri demonstrated moderate activity against M. smegmatis (2.91 mg/mL) and E. coli (1.16 mg/mL). Fusarium sp. exhibited the broadest spectrum of antibacterial activity, with MIC values ranging from 0.03 mg/mL (B. subtilis) to 10 mg/mL (M. smegmatis). P. leucadendri produced 29 metabolites, Fusarium sp. had 23 identified metabolites, and a total of 11 metabolites were identified from P. chrysogenum. The fruits of the plant, accounting for 60%, appeared to be the most abundant in the endophyte diversity when compared to the stems and leaves. This study highlights the potential of fungal endophytes from S. mauritianum as a source of novel bioactive compounds, particularly against multidrug-resistant pathogens, contributing to the ongoing efforts to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Abraham Goodness Ogofure
- Department of Biotechnology and Food-Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| | | | - Ezekiel Green
- Department of Biotechnology and Food-Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
3
|
Wen J, Okyere SK, Wang S, Wang J, Huang R, Tang Z, Wang X, Shao C, Hu Y. Antibacterial Activity and Multi-Targeted Mechanism of Action of Suberanilic Acid Isolated from Pestalotiopsis trachycarpicola DCL44: An Endophytic Fungi from Ageratina adenophora. Molecules 2024; 29:4205. [PMID: 39275053 PMCID: PMC11396930 DOI: 10.3390/molecules29174205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly threatening foodborne pathogen capable of causing severe organ and life-threatening diseases. Over the past years, various commercial antibiotics have been used to treat MRSA infections. However, these commercial antibiotics have not yielded efficient results and also cause other side effects; therefore, there is a need for the development of effective alternatives to replace these commercial antibiotics. Suberanilic acid, an amide alkaloid obtained from the endophytic fungus Pestalotiopsis trachycarpicola DCL44, has been identified as a significant antimicrobial agent. However, its antibiotic properties on multi-drug-resistant bacteria such as MRSA have not been fully explored. Therefore, to investigate the potential antimicrobial mechanism of suberanilic acid against MRSA, a quantitative proteomics approach using tandem mass tagging (TMT) was used. The results obtained in the study revealed that suberanilic acid targets multiple pathways in MRSA, including disruption of ribosome synthesis, inhibition of membrane translocation for nutrient uptake (ABC transporter system), and causing dysregulation of carbohydrate and amino acid energy metabolism. These results provide new insights into the mechanism of action of suberanilic acid against MRSA and offer technical support and a theoretical basis for the development of novel food antimicrobial agents derived from endophytic fungal origin.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- College of Animal Science, Xichang University, Xichang 615013, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyao Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chenyang Shao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Sundar RDV, Arunachalam S. Xenomyrothecium tongaense PTS8: a rare endophyte of Polianthes tuberosa with salient antagonism against multidrug-resistant pathogens. Front Microbiol 2024; 15:1327190. [PMID: 38435697 PMCID: PMC10906109 DOI: 10.3389/fmicb.2024.1327190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Endophytes refer to microorganisms residing within the endosphere of plants, particularly perennials, without inflicting noticeable injury or inducing obvious morphological variations to their host plant or host organism. Endophytic fungi, although often overlooked microorganisms, have garnered interest due to their significant biological diversity and ability to produce novel pharmacological substances. Methods In this study, fourteen endophytic fungi retrieved were from the stem of the perennial plant Polianthes tuberosa of the Asparagaceae family. These fungal crude metabolites were tested for antagonistic susceptibility to Multi-Drug Resistant (MDR) pathogens using agar well diffusion, Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) assays. The chequerboard test was used to assess the synergistic impact of active extract. Results and discussion In early antibacterial screening using the Agar plug diffusion test, three of fourteen endophytes demonstrated antagonism against Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococcus (VRE). Three isolates were grown in liquid medium and their secondary metabolites were recovered using various organic solvents. Eight extracts from three endophytic fungi displayed antagonism against one or more human pathogens with diameters ranging from 11 to 24 mm. The highest antagonistic effect was obtained in ethyl acetate extract for PTS8 isolate against two MRSA (ATCC 43300, 700699) with 20 ± 0.27 and 22 ± 0.47 mm zones of inhibition, respectively, among different solvent extracts. The extract had MICs of 3.12 ± 0.05 and 1.56 ± 0.05 μg/mL, and MBCs of 50 ± 0.01 and 12.5 ± 0.04 μg/mL, respectively. Antagonism against VRE was 18 ± 0.23 mm Zone of Inhibition (ZOI) with MIC and MBC of 6.25 ± 0.25 and 25 ± 0.01 μg/mL. When ethyl acetate extract was coupled with antibiotics, the chequerboard assay demonstrated a synergistic impact against MDR bacteria. In an antioxidant test, it had an inhibitory impact of 87 ± 0.5% and 88.5 ± 0.5% in 2,2-Diphenyl-1-Picrylhydrazyl and reducing power assay, respectively, at 150 μg/mL concentration. PTS8 was identified as a Xenomyrothecium tongaense strain by 18S rRNA internal transcribed spacer (ITS) sequencing. To our insight, it is the foremost study to demonstrate the presence of an X. tongaense endophyte in the stem of P. tuberosa and the first report to study the antibacterial efficacy of X. tongaense which might serve as a powerful antibacterial source against antibiotic-resistant human infections.
Collapse
Affiliation(s)
- Ranjitha Dhevi V. Sundar
- Laboratory of Microbiology, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- Laboratory of Microbiology, Department of Agriculture Microbiology, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Sathiavelu Arunachalam
- Laboratory of Microbiology, Department of Agriculture Microbiology, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
5
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|